Solve for t
t = \frac{61}{11} = 5\frac{6}{11} \approx 5.545454545
t=0
Share
Copied to clipboard
t\left(44t-244\right)=0
Factor out t.
t=0 t=\frac{61}{11}
To find equation solutions, solve t=0 and 44t-244=0.
44t^{2}-244t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-244\right)±\sqrt{\left(-244\right)^{2}}}{2\times 44}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 44 for a, -244 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-244\right)±244}{2\times 44}
Take the square root of \left(-244\right)^{2}.
t=\frac{244±244}{2\times 44}
The opposite of -244 is 244.
t=\frac{244±244}{88}
Multiply 2 times 44.
t=\frac{488}{88}
Now solve the equation t=\frac{244±244}{88} when ± is plus. Add 244 to 244.
t=\frac{61}{11}
Reduce the fraction \frac{488}{88} to lowest terms by extracting and canceling out 8.
t=\frac{0}{88}
Now solve the equation t=\frac{244±244}{88} when ± is minus. Subtract 244 from 244.
t=0
Divide 0 by 88.
t=\frac{61}{11} t=0
The equation is now solved.
44t^{2}-244t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{44t^{2}-244t}{44}=\frac{0}{44}
Divide both sides by 44.
t^{2}+\left(-\frac{244}{44}\right)t=\frac{0}{44}
Dividing by 44 undoes the multiplication by 44.
t^{2}-\frac{61}{11}t=\frac{0}{44}
Reduce the fraction \frac{-244}{44} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{61}{11}t=0
Divide 0 by 44.
t^{2}-\frac{61}{11}t+\left(-\frac{61}{22}\right)^{2}=\left(-\frac{61}{22}\right)^{2}
Divide -\frac{61}{11}, the coefficient of the x term, by 2 to get -\frac{61}{22}. Then add the square of -\frac{61}{22} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{61}{11}t+\frac{3721}{484}=\frac{3721}{484}
Square -\frac{61}{22} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{61}{22}\right)^{2}=\frac{3721}{484}
Factor t^{2}-\frac{61}{11}t+\frac{3721}{484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{61}{22}\right)^{2}}=\sqrt{\frac{3721}{484}}
Take the square root of both sides of the equation.
t-\frac{61}{22}=\frac{61}{22} t-\frac{61}{22}=-\frac{61}{22}
Simplify.
t=\frac{61}{11} t=0
Add \frac{61}{22} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}