Solve for x (complex solution)
x=\frac{30+6\sqrt{899}i}{11}\approx 2.727272727+16.354542928i
x=\frac{-6\sqrt{899}i+30}{11}\approx 2.727272727-16.354542928i
Graph
Share
Copied to clipboard
44x^{2}-240x+12096=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-240\right)±\sqrt{\left(-240\right)^{2}-4\times 44\times 12096}}{2\times 44}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 44 for a, -240 for b, and 12096 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-240\right)±\sqrt{57600-4\times 44\times 12096}}{2\times 44}
Square -240.
x=\frac{-\left(-240\right)±\sqrt{57600-176\times 12096}}{2\times 44}
Multiply -4 times 44.
x=\frac{-\left(-240\right)±\sqrt{57600-2128896}}{2\times 44}
Multiply -176 times 12096.
x=\frac{-\left(-240\right)±\sqrt{-2071296}}{2\times 44}
Add 57600 to -2128896.
x=\frac{-\left(-240\right)±48\sqrt{899}i}{2\times 44}
Take the square root of -2071296.
x=\frac{240±48\sqrt{899}i}{2\times 44}
The opposite of -240 is 240.
x=\frac{240±48\sqrt{899}i}{88}
Multiply 2 times 44.
x=\frac{240+48\sqrt{899}i}{88}
Now solve the equation x=\frac{240±48\sqrt{899}i}{88} when ± is plus. Add 240 to 48i\sqrt{899}.
x=\frac{30+6\sqrt{899}i}{11}
Divide 240+48i\sqrt{899} by 88.
x=\frac{-48\sqrt{899}i+240}{88}
Now solve the equation x=\frac{240±48\sqrt{899}i}{88} when ± is minus. Subtract 48i\sqrt{899} from 240.
x=\frac{-6\sqrt{899}i+30}{11}
Divide 240-48i\sqrt{899} by 88.
x=\frac{30+6\sqrt{899}i}{11} x=\frac{-6\sqrt{899}i+30}{11}
The equation is now solved.
44x^{2}-240x+12096=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
44x^{2}-240x+12096-12096=-12096
Subtract 12096 from both sides of the equation.
44x^{2}-240x=-12096
Subtracting 12096 from itself leaves 0.
\frac{44x^{2}-240x}{44}=-\frac{12096}{44}
Divide both sides by 44.
x^{2}+\left(-\frac{240}{44}\right)x=-\frac{12096}{44}
Dividing by 44 undoes the multiplication by 44.
x^{2}-\frac{60}{11}x=-\frac{12096}{44}
Reduce the fraction \frac{-240}{44} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{60}{11}x=-\frac{3024}{11}
Reduce the fraction \frac{-12096}{44} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{60}{11}x+\left(-\frac{30}{11}\right)^{2}=-\frac{3024}{11}+\left(-\frac{30}{11}\right)^{2}
Divide -\frac{60}{11}, the coefficient of the x term, by 2 to get -\frac{30}{11}. Then add the square of -\frac{30}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{60}{11}x+\frac{900}{121}=-\frac{3024}{11}+\frac{900}{121}
Square -\frac{30}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{60}{11}x+\frac{900}{121}=-\frac{32364}{121}
Add -\frac{3024}{11} to \frac{900}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{30}{11}\right)^{2}=-\frac{32364}{121}
Factor x^{2}-\frac{60}{11}x+\frac{900}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{30}{11}\right)^{2}}=\sqrt{-\frac{32364}{121}}
Take the square root of both sides of the equation.
x-\frac{30}{11}=\frac{6\sqrt{899}i}{11} x-\frac{30}{11}=-\frac{6\sqrt{899}i}{11}
Simplify.
x=\frac{30+6\sqrt{899}i}{11} x=\frac{-6\sqrt{899}i+30}{11}
Add \frac{30}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}