Solve for d
d=-\frac{15}{22}\approx -0.681818182
d = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
a+b=-36 ab=44\left(-45\right)=-1980
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 44d^{2}+ad+bd-45. To find a and b, set up a system to be solved.
1,-1980 2,-990 3,-660 4,-495 5,-396 6,-330 9,-220 10,-198 11,-180 12,-165 15,-132 18,-110 20,-99 22,-90 30,-66 33,-60 36,-55 44,-45
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -1980.
1-1980=-1979 2-990=-988 3-660=-657 4-495=-491 5-396=-391 6-330=-324 9-220=-211 10-198=-188 11-180=-169 12-165=-153 15-132=-117 18-110=-92 20-99=-79 22-90=-68 30-66=-36 33-60=-27 36-55=-19 44-45=-1
Calculate the sum for each pair.
a=-66 b=30
The solution is the pair that gives sum -36.
\left(44d^{2}-66d\right)+\left(30d-45\right)
Rewrite 44d^{2}-36d-45 as \left(44d^{2}-66d\right)+\left(30d-45\right).
22d\left(2d-3\right)+15\left(2d-3\right)
Factor out 22d in the first and 15 in the second group.
\left(2d-3\right)\left(22d+15\right)
Factor out common term 2d-3 by using distributive property.
d=\frac{3}{2} d=-\frac{15}{22}
To find equation solutions, solve 2d-3=0 and 22d+15=0.
44d^{2}-36d-45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 44\left(-45\right)}}{2\times 44}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 44 for a, -36 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-36\right)±\sqrt{1296-4\times 44\left(-45\right)}}{2\times 44}
Square -36.
d=\frac{-\left(-36\right)±\sqrt{1296-176\left(-45\right)}}{2\times 44}
Multiply -4 times 44.
d=\frac{-\left(-36\right)±\sqrt{1296+7920}}{2\times 44}
Multiply -176 times -45.
d=\frac{-\left(-36\right)±\sqrt{9216}}{2\times 44}
Add 1296 to 7920.
d=\frac{-\left(-36\right)±96}{2\times 44}
Take the square root of 9216.
d=\frac{36±96}{2\times 44}
The opposite of -36 is 36.
d=\frac{36±96}{88}
Multiply 2 times 44.
d=\frac{132}{88}
Now solve the equation d=\frac{36±96}{88} when ± is plus. Add 36 to 96.
d=\frac{3}{2}
Reduce the fraction \frac{132}{88} to lowest terms by extracting and canceling out 44.
d=-\frac{60}{88}
Now solve the equation d=\frac{36±96}{88} when ± is minus. Subtract 96 from 36.
d=-\frac{15}{22}
Reduce the fraction \frac{-60}{88} to lowest terms by extracting and canceling out 4.
d=\frac{3}{2} d=-\frac{15}{22}
The equation is now solved.
44d^{2}-36d-45=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
44d^{2}-36d-45-\left(-45\right)=-\left(-45\right)
Add 45 to both sides of the equation.
44d^{2}-36d=-\left(-45\right)
Subtracting -45 from itself leaves 0.
44d^{2}-36d=45
Subtract -45 from 0.
\frac{44d^{2}-36d}{44}=\frac{45}{44}
Divide both sides by 44.
d^{2}+\left(-\frac{36}{44}\right)d=\frac{45}{44}
Dividing by 44 undoes the multiplication by 44.
d^{2}-\frac{9}{11}d=\frac{45}{44}
Reduce the fraction \frac{-36}{44} to lowest terms by extracting and canceling out 4.
d^{2}-\frac{9}{11}d+\left(-\frac{9}{22}\right)^{2}=\frac{45}{44}+\left(-\frac{9}{22}\right)^{2}
Divide -\frac{9}{11}, the coefficient of the x term, by 2 to get -\frac{9}{22}. Then add the square of -\frac{9}{22} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-\frac{9}{11}d+\frac{81}{484}=\frac{45}{44}+\frac{81}{484}
Square -\frac{9}{22} by squaring both the numerator and the denominator of the fraction.
d^{2}-\frac{9}{11}d+\frac{81}{484}=\frac{144}{121}
Add \frac{45}{44} to \frac{81}{484} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d-\frac{9}{22}\right)^{2}=\frac{144}{121}
Factor d^{2}-\frac{9}{11}d+\frac{81}{484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{9}{22}\right)^{2}}=\sqrt{\frac{144}{121}}
Take the square root of both sides of the equation.
d-\frac{9}{22}=\frac{12}{11} d-\frac{9}{22}=-\frac{12}{11}
Simplify.
d=\frac{3}{2} d=-\frac{15}{22}
Add \frac{9}{22} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}