Evaluate
\frac{22}{15}\approx 1.466666667
Factor
\frac{2 \cdot 11}{3 \cdot 5} = 1\frac{7}{15} = 1.4666666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)44}\\\end{array}
Use the 1^{st} digit 4 from dividend 44
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)44}\\\end{array}
Since 4 is less than 30, use the next digit 4 from dividend 44 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)44}\\\end{array}
Use the 2^{nd} digit 4 from dividend 44
\begin{array}{l}\phantom{30)}01\phantom{4}\\30\overline{)44}\\\phantom{30)}\underline{\phantom{}30\phantom{}}\\\phantom{30)}14\\\end{array}
Find closest multiple of 30 to 44. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 44 to get reminder 14. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }14
Since 14 is less than 30, stop the division. The reminder is 14. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}