Evaluate
\frac{22}{9}\approx 2.444444444
Factor
\frac{2 \cdot 11}{3 ^ {2}} = 2\frac{4}{9} = 2.4444444444444446
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)44}\\\end{array}
Use the 1^{st} digit 4 from dividend 44
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)44}\\\end{array}
Since 4 is less than 18, use the next digit 4 from dividend 44 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)44}\\\end{array}
Use the 2^{nd} digit 4 from dividend 44
\begin{array}{l}\phantom{18)}02\phantom{4}\\18\overline{)44}\\\phantom{18)}\underline{\phantom{}36\phantom{}}\\\phantom{18)9}8\\\end{array}
Find closest multiple of 18 to 44. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 44 to get reminder 8. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }8
Since 8 is less than 18, stop the division. The reminder is 8. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}