Evaluate
\frac{\sqrt{33}}{7}-\frac{\sqrt{66}}{6}+44\approx 43.466645406
Factor
\frac{6 \sqrt{33} + 1848 - 7 \sqrt{66}}{42} = 43.46664540587563
Quiz
Arithmetic
5 problems similar to:
44 + \frac { \sqrt { 33 } } { 7 } - \frac { \sqrt { 66 } } { 6 }
Share
Copied to clipboard
\frac{44\times 7}{7}+\frac{\sqrt{33}}{7}-\frac{\sqrt{66}}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 44 times \frac{7}{7}.
\frac{44\times 7+\sqrt{33}}{7}-\frac{\sqrt{66}}{6}
Since \frac{44\times 7}{7} and \frac{\sqrt{33}}{7} have the same denominator, add them by adding their numerators.
\frac{308+\sqrt{33}}{7}-\frac{\sqrt{66}}{6}
Do the multiplications in 44\times 7+\sqrt{33}.
\frac{6\left(308+\sqrt{33}\right)}{42}-\frac{7\sqrt{66}}{42}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 6 is 42. Multiply \frac{308+\sqrt{33}}{7} times \frac{6}{6}. Multiply \frac{\sqrt{66}}{6} times \frac{7}{7}.
\frac{6\left(308+\sqrt{33}\right)-7\sqrt{66}}{42}
Since \frac{6\left(308+\sqrt{33}\right)}{42} and \frac{7\sqrt{66}}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{1848+6\sqrt{33}-7\sqrt{66}}{42}
Do the multiplications in 6\left(308+\sqrt{33}\right)-7\sqrt{66}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}