Evaluate
\frac{438}{17}\approx 25.764705882
Factor
\frac{2 \cdot 3 \cdot 73}{17} = 25\frac{13}{17} = 25.764705882352942
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)438}\\\end{array}
Use the 1^{st} digit 4 from dividend 438
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)438}\\\end{array}
Since 4 is less than 17, use the next digit 3 from dividend 438 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)438}\\\end{array}
Use the 2^{nd} digit 3 from dividend 438
\begin{array}{l}\phantom{17)}02\phantom{4}\\17\overline{)438}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)9}9\\\end{array}
Find closest multiple of 17 to 43. We see that 2 \times 17 = 34 is the nearest. Now subtract 34 from 43 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{17)}02\phantom{5}\\17\overline{)438}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)9}98\\\end{array}
Use the 3^{rd} digit 8 from dividend 438
\begin{array}{l}\phantom{17)}025\phantom{6}\\17\overline{)438}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)9}98\\\phantom{17)}\underline{\phantom{9}85\phantom{}}\\\phantom{17)9}13\\\end{array}
Find closest multiple of 17 to 98. We see that 5 \times 17 = 85 is the nearest. Now subtract 85 from 98 to get reminder 13. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }13
Since 13 is less than 17, stop the division. The reminder is 13. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}