Evaluate
\frac{438}{11}\approx 39.818181818
Factor
\frac{2 \cdot 3 \cdot 73}{11} = 39\frac{9}{11} = 39.81818181818182
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)438}\\\end{array}
Use the 1^{st} digit 4 from dividend 438
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)438}\\\end{array}
Since 4 is less than 11, use the next digit 3 from dividend 438 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)438}\\\end{array}
Use the 2^{nd} digit 3 from dividend 438
\begin{array}{l}\phantom{11)}03\phantom{4}\\11\overline{)438}\\\phantom{11)}\underline{\phantom{}33\phantom{9}}\\\phantom{11)}10\\\end{array}
Find closest multiple of 11 to 43. We see that 3 \times 11 = 33 is the nearest. Now subtract 33 from 43 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{11)}03\phantom{5}\\11\overline{)438}\\\phantom{11)}\underline{\phantom{}33\phantom{9}}\\\phantom{11)}108\\\end{array}
Use the 3^{rd} digit 8 from dividend 438
\begin{array}{l}\phantom{11)}039\phantom{6}\\11\overline{)438}\\\phantom{11)}\underline{\phantom{}33\phantom{9}}\\\phantom{11)}108\\\phantom{11)}\underline{\phantom{9}99\phantom{}}\\\phantom{11)99}9\\\end{array}
Find closest multiple of 11 to 108. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 108 to get reminder 9. Add 9 to quotient.
\text{Quotient: }39 \text{Reminder: }9
Since 9 is less than 11, stop the division. The reminder is 9. The topmost line 039 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}