Evaluate
\frac{46}{41}\approx 1.12195122
Factor
\frac{2 \cdot 23}{41} = 1\frac{5}{41} = 1.1219512195121952
Share
Copied to clipboard
\begin{array}{l}\phantom{3895)}\phantom{1}\\3895\overline{)4370}\\\end{array}
Use the 1^{st} digit 4 from dividend 4370
\begin{array}{l}\phantom{3895)}0\phantom{2}\\3895\overline{)4370}\\\end{array}
Since 4 is less than 3895, use the next digit 3 from dividend 4370 and add 0 to the quotient
\begin{array}{l}\phantom{3895)}0\phantom{3}\\3895\overline{)4370}\\\end{array}
Use the 2^{nd} digit 3 from dividend 4370
\begin{array}{l}\phantom{3895)}00\phantom{4}\\3895\overline{)4370}\\\end{array}
Since 43 is less than 3895, use the next digit 7 from dividend 4370 and add 0 to the quotient
\begin{array}{l}\phantom{3895)}00\phantom{5}\\3895\overline{)4370}\\\end{array}
Use the 3^{rd} digit 7 from dividend 4370
\begin{array}{l}\phantom{3895)}000\phantom{6}\\3895\overline{)4370}\\\end{array}
Since 437 is less than 3895, use the next digit 0 from dividend 4370 and add 0 to the quotient
\begin{array}{l}\phantom{3895)}000\phantom{7}\\3895\overline{)4370}\\\end{array}
Use the 4^{th} digit 0 from dividend 4370
\begin{array}{l}\phantom{3895)}0001\phantom{8}\\3895\overline{)4370}\\\phantom{3895)}\underline{\phantom{}3895\phantom{}}\\\phantom{3895)9}475\\\end{array}
Find closest multiple of 3895 to 4370. We see that 1 \times 3895 = 3895 is the nearest. Now subtract 3895 from 4370 to get reminder 475. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }475
Since 475 is less than 3895, stop the division. The reminder is 475. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}