Evaluate
19
Factor
19
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)437}\\\end{array}
Use the 1^{st} digit 4 from dividend 437
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)437}\\\end{array}
Since 4 is less than 23, use the next digit 3 from dividend 437 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)437}\\\end{array}
Use the 2^{nd} digit 3 from dividend 437
\begin{array}{l}\phantom{23)}01\phantom{4}\\23\overline{)437}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}20\\\end{array}
Find closest multiple of 23 to 43. We see that 1 \times 23 = 23 is the nearest. Now subtract 23 from 43 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{23)}01\phantom{5}\\23\overline{)437}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}207\\\end{array}
Use the 3^{rd} digit 7 from dividend 437
\begin{array}{l}\phantom{23)}019\phantom{6}\\23\overline{)437}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}207\\\phantom{23)}\underline{\phantom{}207\phantom{}}\\\phantom{23)999}0\\\end{array}
Find closest multiple of 23 to 207. We see that 9 \times 23 = 207 is the nearest. Now subtract 207 from 207 to get reminder 0. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }0
Since 0 is less than 23, stop the division. The reminder is 0. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}