Evaluate
23
Factor
23
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)437}\\\end{array}
Use the 1^{st} digit 4 from dividend 437
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)437}\\\end{array}
Since 4 is less than 19, use the next digit 3 from dividend 437 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)437}\\\end{array}
Use the 2^{nd} digit 3 from dividend 437
\begin{array}{l}\phantom{19)}02\phantom{4}\\19\overline{)437}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)9}5\\\end{array}
Find closest multiple of 19 to 43. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 43 to get reminder 5. Add 2 to quotient.
\begin{array}{l}\phantom{19)}02\phantom{5}\\19\overline{)437}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)9}57\\\end{array}
Use the 3^{rd} digit 7 from dividend 437
\begin{array}{l}\phantom{19)}023\phantom{6}\\19\overline{)437}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)9}57\\\phantom{19)}\underline{\phantom{9}57\phantom{}}\\\phantom{19)999}0\\\end{array}
Find closest multiple of 19 to 57. We see that 3 \times 19 = 57 is the nearest. Now subtract 57 from 57 to get reminder 0. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }0
Since 0 is less than 19, stop the division. The reminder is 0. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}