Evaluate
\frac{4351037}{58585}\approx 74.268788939
Factor
\frac{1373 \cdot 3169}{5 \cdot 11717} = 74\frac{15747}{58585} = 74.26878893914825
Share
Copied to clipboard
\begin{array}{l}\phantom{58585)}\phantom{1}\\58585\overline{)4351037}\\\end{array}
Use the 1^{st} digit 4 from dividend 4351037
\begin{array}{l}\phantom{58585)}0\phantom{2}\\58585\overline{)4351037}\\\end{array}
Since 4 is less than 58585, use the next digit 3 from dividend 4351037 and add 0 to the quotient
\begin{array}{l}\phantom{58585)}0\phantom{3}\\58585\overline{)4351037}\\\end{array}
Use the 2^{nd} digit 3 from dividend 4351037
\begin{array}{l}\phantom{58585)}00\phantom{4}\\58585\overline{)4351037}\\\end{array}
Since 43 is less than 58585, use the next digit 5 from dividend 4351037 and add 0 to the quotient
\begin{array}{l}\phantom{58585)}00\phantom{5}\\58585\overline{)4351037}\\\end{array}
Use the 3^{rd} digit 5 from dividend 4351037
\begin{array}{l}\phantom{58585)}000\phantom{6}\\58585\overline{)4351037}\\\end{array}
Since 435 is less than 58585, use the next digit 1 from dividend 4351037 and add 0 to the quotient
\begin{array}{l}\phantom{58585)}000\phantom{7}\\58585\overline{)4351037}\\\end{array}
Use the 4^{th} digit 1 from dividend 4351037
\begin{array}{l}\phantom{58585)}0000\phantom{8}\\58585\overline{)4351037}\\\end{array}
Since 4351 is less than 58585, use the next digit 0 from dividend 4351037 and add 0 to the quotient
\begin{array}{l}\phantom{58585)}0000\phantom{9}\\58585\overline{)4351037}\\\end{array}
Use the 5^{th} digit 0 from dividend 4351037
\begin{array}{l}\phantom{58585)}00000\phantom{10}\\58585\overline{)4351037}\\\end{array}
Since 43510 is less than 58585, use the next digit 3 from dividend 4351037 and add 0 to the quotient
\begin{array}{l}\phantom{58585)}00000\phantom{11}\\58585\overline{)4351037}\\\end{array}
Use the 6^{th} digit 3 from dividend 4351037
\begin{array}{l}\phantom{58585)}000007\phantom{12}\\58585\overline{)4351037}\\\phantom{58585)}\underline{\phantom{}410095\phantom{9}}\\\phantom{58585)9}25008\\\end{array}
Find closest multiple of 58585 to 435103. We see that 7 \times 58585 = 410095 is the nearest. Now subtract 410095 from 435103 to get reminder 25008. Add 7 to quotient.
\begin{array}{l}\phantom{58585)}000007\phantom{13}\\58585\overline{)4351037}\\\phantom{58585)}\underline{\phantom{}410095\phantom{9}}\\\phantom{58585)9}250087\\\end{array}
Use the 7^{th} digit 7 from dividend 4351037
\begin{array}{l}\phantom{58585)}0000074\phantom{14}\\58585\overline{)4351037}\\\phantom{58585)}\underline{\phantom{}410095\phantom{9}}\\\phantom{58585)9}250087\\\phantom{58585)}\underline{\phantom{9}234340\phantom{}}\\\phantom{58585)99}15747\\\end{array}
Find closest multiple of 58585 to 250087. We see that 4 \times 58585 = 234340 is the nearest. Now subtract 234340 from 250087 to get reminder 15747. Add 4 to quotient.
\text{Quotient: }74 \text{Reminder: }15747
Since 15747 is less than 58585, stop the division. The reminder is 15747. The topmost line 0000074 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 74.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}