Evaluate
\frac{145}{28}\approx 5.178571429
Factor
\frac{5 \cdot 29}{2 ^ {2} \cdot 7} = 5\frac{5}{28} = 5.178571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)435}\\\end{array}
Use the 1^{st} digit 4 from dividend 435
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)435}\\\end{array}
Since 4 is less than 84, use the next digit 3 from dividend 435 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)435}\\\end{array}
Use the 2^{nd} digit 3 from dividend 435
\begin{array}{l}\phantom{84)}00\phantom{4}\\84\overline{)435}\\\end{array}
Since 43 is less than 84, use the next digit 5 from dividend 435 and add 0 to the quotient
\begin{array}{l}\phantom{84)}00\phantom{5}\\84\overline{)435}\\\end{array}
Use the 3^{rd} digit 5 from dividend 435
\begin{array}{l}\phantom{84)}005\phantom{6}\\84\overline{)435}\\\phantom{84)}\underline{\phantom{}420\phantom{}}\\\phantom{84)9}15\\\end{array}
Find closest multiple of 84 to 435. We see that 5 \times 84 = 420 is the nearest. Now subtract 420 from 435 to get reminder 15. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }15
Since 15 is less than 84, stop the division. The reminder is 15. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}