Evaluate
\frac{433}{400}=1.0825
Factor
\frac{433}{2 ^ {4} \cdot 5 ^ {2}} = 1\frac{33}{400} = 1.0825
Share
Copied to clipboard
\begin{array}{l}\phantom{400)}\phantom{1}\\400\overline{)433}\\\end{array}
Use the 1^{st} digit 4 from dividend 433
\begin{array}{l}\phantom{400)}0\phantom{2}\\400\overline{)433}\\\end{array}
Since 4 is less than 400, use the next digit 3 from dividend 433 and add 0 to the quotient
\begin{array}{l}\phantom{400)}0\phantom{3}\\400\overline{)433}\\\end{array}
Use the 2^{nd} digit 3 from dividend 433
\begin{array}{l}\phantom{400)}00\phantom{4}\\400\overline{)433}\\\end{array}
Since 43 is less than 400, use the next digit 3 from dividend 433 and add 0 to the quotient
\begin{array}{l}\phantom{400)}00\phantom{5}\\400\overline{)433}\\\end{array}
Use the 3^{rd} digit 3 from dividend 433
\begin{array}{l}\phantom{400)}001\phantom{6}\\400\overline{)433}\\\phantom{400)}\underline{\phantom{}400\phantom{}}\\\phantom{400)9}33\\\end{array}
Find closest multiple of 400 to 433. We see that 1 \times 400 = 400 is the nearest. Now subtract 400 from 433 to get reminder 33. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }33
Since 33 is less than 400, stop the division. The reminder is 33. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}