Evaluate
\frac{9}{5}=1.8
Factor
\frac{3 ^ {2}}{5} = 1\frac{4}{5} = 1.8
Share
Copied to clipboard
\begin{array}{l}\phantom{240)}\phantom{1}\\240\overline{)432}\\\end{array}
Use the 1^{st} digit 4 from dividend 432
\begin{array}{l}\phantom{240)}0\phantom{2}\\240\overline{)432}\\\end{array}
Since 4 is less than 240, use the next digit 3 from dividend 432 and add 0 to the quotient
\begin{array}{l}\phantom{240)}0\phantom{3}\\240\overline{)432}\\\end{array}
Use the 2^{nd} digit 3 from dividend 432
\begin{array}{l}\phantom{240)}00\phantom{4}\\240\overline{)432}\\\end{array}
Since 43 is less than 240, use the next digit 2 from dividend 432 and add 0 to the quotient
\begin{array}{l}\phantom{240)}00\phantom{5}\\240\overline{)432}\\\end{array}
Use the 3^{rd} digit 2 from dividend 432
\begin{array}{l}\phantom{240)}001\phantom{6}\\240\overline{)432}\\\phantom{240)}\underline{\phantom{}240\phantom{}}\\\phantom{240)}192\\\end{array}
Find closest multiple of 240 to 432. We see that 1 \times 240 = 240 is the nearest. Now subtract 240 from 432 to get reminder 192. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }192
Since 192 is less than 240, stop the division. The reminder is 192. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}