Evaluate
\frac{431}{24}\approx 17.958333333
Factor
\frac{431}{2 ^ {3} \cdot 3} = 17\frac{23}{24} = 17.958333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)431}\\\end{array}
Use the 1^{st} digit 4 from dividend 431
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)431}\\\end{array}
Since 4 is less than 24, use the next digit 3 from dividend 431 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)431}\\\end{array}
Use the 2^{nd} digit 3 from dividend 431
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)431}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}19\\\end{array}
Find closest multiple of 24 to 43. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 43 to get reminder 19. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)431}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}191\\\end{array}
Use the 3^{rd} digit 1 from dividend 431
\begin{array}{l}\phantom{24)}017\phantom{6}\\24\overline{)431}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}191\\\phantom{24)}\underline{\phantom{}168\phantom{}}\\\phantom{24)9}23\\\end{array}
Find closest multiple of 24 to 191. We see that 7 \times 24 = 168 is the nearest. Now subtract 168 from 191 to get reminder 23. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }23
Since 23 is less than 24, stop the division. The reminder is 23. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}