Evaluate
\frac{430}{93}\approx 4.623655914
Factor
\frac{2 \cdot 5 \cdot 43}{3 \cdot 31} = 4\frac{58}{93} = 4.623655913978495
Share
Copied to clipboard
\begin{array}{l}\phantom{93)}\phantom{1}\\93\overline{)430}\\\end{array}
Use the 1^{st} digit 4 from dividend 430
\begin{array}{l}\phantom{93)}0\phantom{2}\\93\overline{)430}\\\end{array}
Since 4 is less than 93, use the next digit 3 from dividend 430 and add 0 to the quotient
\begin{array}{l}\phantom{93)}0\phantom{3}\\93\overline{)430}\\\end{array}
Use the 2^{nd} digit 3 from dividend 430
\begin{array}{l}\phantom{93)}00\phantom{4}\\93\overline{)430}\\\end{array}
Since 43 is less than 93, use the next digit 0 from dividend 430 and add 0 to the quotient
\begin{array}{l}\phantom{93)}00\phantom{5}\\93\overline{)430}\\\end{array}
Use the 3^{rd} digit 0 from dividend 430
\begin{array}{l}\phantom{93)}004\phantom{6}\\93\overline{)430}\\\phantom{93)}\underline{\phantom{}372\phantom{}}\\\phantom{93)9}58\\\end{array}
Find closest multiple of 93 to 430. We see that 4 \times 93 = 372 is the nearest. Now subtract 372 from 430 to get reminder 58. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }58
Since 58 is less than 93, stop the division. The reminder is 58. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}