Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

46x^{2}-12x+2x^{2}+3x-6
Combine 43x^{2} and 3x^{2} to get 46x^{2}.
48x^{2}-12x+3x-6
Combine 46x^{2} and 2x^{2} to get 48x^{2}.
48x^{2}-9x-6
Combine -12x and 3x to get -9x.
factor(46x^{2}-12x+2x^{2}+3x-6)
Combine 43x^{2} and 3x^{2} to get 46x^{2}.
factor(48x^{2}-12x+3x-6)
Combine 46x^{2} and 2x^{2} to get 48x^{2}.
factor(48x^{2}-9x-6)
Combine -12x and 3x to get -9x.
48x^{2}-9x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 48\left(-6\right)}}{2\times 48}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 48\left(-6\right)}}{2\times 48}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-192\left(-6\right)}}{2\times 48}
Multiply -4 times 48.
x=\frac{-\left(-9\right)±\sqrt{81+1152}}{2\times 48}
Multiply -192 times -6.
x=\frac{-\left(-9\right)±\sqrt{1233}}{2\times 48}
Add 81 to 1152.
x=\frac{-\left(-9\right)±3\sqrt{137}}{2\times 48}
Take the square root of 1233.
x=\frac{9±3\sqrt{137}}{2\times 48}
The opposite of -9 is 9.
x=\frac{9±3\sqrt{137}}{96}
Multiply 2 times 48.
x=\frac{3\sqrt{137}+9}{96}
Now solve the equation x=\frac{9±3\sqrt{137}}{96} when ± is plus. Add 9 to 3\sqrt{137}.
x=\frac{\sqrt{137}+3}{32}
Divide 9+3\sqrt{137} by 96.
x=\frac{9-3\sqrt{137}}{96}
Now solve the equation x=\frac{9±3\sqrt{137}}{96} when ± is minus. Subtract 3\sqrt{137} from 9.
x=\frac{3-\sqrt{137}}{32}
Divide 9-3\sqrt{137} by 96.
48x^{2}-9x-6=48\left(x-\frac{\sqrt{137}+3}{32}\right)\left(x-\frac{3-\sqrt{137}}{32}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+\sqrt{137}}{32} for x_{1} and \frac{3-\sqrt{137}}{32} for x_{2}.