Evaluate
\frac{107}{60}\approx 1.783333333
Factor
\frac{107}{2 ^ {2} \cdot 3 \cdot 5} = 1\frac{47}{60} = 1.7833333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{240)}\phantom{1}\\240\overline{)428}\\\end{array}
Use the 1^{st} digit 4 from dividend 428
\begin{array}{l}\phantom{240)}0\phantom{2}\\240\overline{)428}\\\end{array}
Since 4 is less than 240, use the next digit 2 from dividend 428 and add 0 to the quotient
\begin{array}{l}\phantom{240)}0\phantom{3}\\240\overline{)428}\\\end{array}
Use the 2^{nd} digit 2 from dividend 428
\begin{array}{l}\phantom{240)}00\phantom{4}\\240\overline{)428}\\\end{array}
Since 42 is less than 240, use the next digit 8 from dividend 428 and add 0 to the quotient
\begin{array}{l}\phantom{240)}00\phantom{5}\\240\overline{)428}\\\end{array}
Use the 3^{rd} digit 8 from dividend 428
\begin{array}{l}\phantom{240)}001\phantom{6}\\240\overline{)428}\\\phantom{240)}\underline{\phantom{}240\phantom{}}\\\phantom{240)}188\\\end{array}
Find closest multiple of 240 to 428. We see that 1 \times 240 = 240 is the nearest. Now subtract 240 from 428 to get reminder 188. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }188
Since 188 is less than 240, stop the division. The reminder is 188. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}