Evaluate
\frac{425}{22}\approx 19.318181818
Factor
\frac{5 ^ {2} \cdot 17}{2 \cdot 11} = 19\frac{7}{22} = 19.318181818181817
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)425}\\\end{array}
Use the 1^{st} digit 4 from dividend 425
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)425}\\\end{array}
Since 4 is less than 22, use the next digit 2 from dividend 425 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)425}\\\end{array}
Use the 2^{nd} digit 2 from dividend 425
\begin{array}{l}\phantom{22)}01\phantom{4}\\22\overline{)425}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}20\\\end{array}
Find closest multiple of 22 to 42. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 42 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{22)}01\phantom{5}\\22\overline{)425}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}205\\\end{array}
Use the 3^{rd} digit 5 from dividend 425
\begin{array}{l}\phantom{22)}019\phantom{6}\\22\overline{)425}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}205\\\phantom{22)}\underline{\phantom{}198\phantom{}}\\\phantom{22)99}7\\\end{array}
Find closest multiple of 22 to 205. We see that 9 \times 22 = 198 is the nearest. Now subtract 198 from 205 to get reminder 7. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }7
Since 7 is less than 22, stop the division. The reminder is 7. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}