Solve for h
h = \frac{448}{11} = 40\frac{8}{11} \approx 40.727272727
Share
Copied to clipboard
4224=\frac{2\times 22}{7}\times 16.5h
Express 2\times \frac{22}{7} as a single fraction.
4224=\frac{44}{7}\times 16.5h
Multiply 2 and 22 to get 44.
4224=\frac{44}{7}\times \frac{33}{2}h
Convert decimal number 16.5 to fraction \frac{165}{10}. Reduce the fraction \frac{165}{10} to lowest terms by extracting and canceling out 5.
4224=\frac{44\times 33}{7\times 2}h
Multiply \frac{44}{7} times \frac{33}{2} by multiplying numerator times numerator and denominator times denominator.
4224=\frac{1452}{14}h
Do the multiplications in the fraction \frac{44\times 33}{7\times 2}.
4224=\frac{726}{7}h
Reduce the fraction \frac{1452}{14} to lowest terms by extracting and canceling out 2.
\frac{726}{7}h=4224
Swap sides so that all variable terms are on the left hand side.
h=4224\times \frac{7}{726}
Multiply both sides by \frac{7}{726}, the reciprocal of \frac{726}{7}.
h=\frac{4224\times 7}{726}
Express 4224\times \frac{7}{726} as a single fraction.
h=\frac{29568}{726}
Multiply 4224 and 7 to get 29568.
h=\frac{448}{11}
Reduce the fraction \frac{29568}{726} to lowest terms by extracting and canceling out 66.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}