Evaluate
\frac{421}{15}\approx 28.066666667
Factor
\frac{421}{3 \cdot 5} = 28\frac{1}{15} = 28.066666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)421}\\\end{array}
Use the 1^{st} digit 4 from dividend 421
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)421}\\\end{array}
Since 4 is less than 15, use the next digit 2 from dividend 421 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)421}\\\end{array}
Use the 2^{nd} digit 2 from dividend 421
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)421}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}12\\\end{array}
Find closest multiple of 15 to 42. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 42 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)421}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}121\\\end{array}
Use the 3^{rd} digit 1 from dividend 421
\begin{array}{l}\phantom{15)}028\phantom{6}\\15\overline{)421}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}121\\\phantom{15)}\underline{\phantom{}120\phantom{}}\\\phantom{15)99}1\\\end{array}
Find closest multiple of 15 to 121. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 121 to get reminder 1. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }1
Since 1 is less than 15, stop the division. The reminder is 1. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}