Evaluate
\frac{420}{23}\approx 18.260869565
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 \cdot 7}{23} = 18\frac{6}{23} = 18.26086956521739
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)420}\\\end{array}
Use the 1^{st} digit 4 from dividend 420
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)420}\\\end{array}
Since 4 is less than 23, use the next digit 2 from dividend 420 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)420}\\\end{array}
Use the 2^{nd} digit 2 from dividend 420
\begin{array}{l}\phantom{23)}01\phantom{4}\\23\overline{)420}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}19\\\end{array}
Find closest multiple of 23 to 42. We see that 1 \times 23 = 23 is the nearest. Now subtract 23 from 42 to get reminder 19. Add 1 to quotient.
\begin{array}{l}\phantom{23)}01\phantom{5}\\23\overline{)420}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}190\\\end{array}
Use the 3^{rd} digit 0 from dividend 420
\begin{array}{l}\phantom{23)}018\phantom{6}\\23\overline{)420}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}190\\\phantom{23)}\underline{\phantom{}184\phantom{}}\\\phantom{23)99}6\\\end{array}
Find closest multiple of 23 to 190. We see that 8 \times 23 = 184 is the nearest. Now subtract 184 from 190 to get reminder 6. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }6
Since 6 is less than 23, stop the division. The reminder is 6. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}