Evaluate
\frac{420}{13}\approx 32.307692308
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 \cdot 7}{13} = 32\frac{4}{13} = 32.30769230769231
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)420}\\\end{array}
Use the 1^{st} digit 4 from dividend 420
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)420}\\\end{array}
Since 4 is less than 13, use the next digit 2 from dividend 420 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)420}\\\end{array}
Use the 2^{nd} digit 2 from dividend 420
\begin{array}{l}\phantom{13)}03\phantom{4}\\13\overline{)420}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}3\\\end{array}
Find closest multiple of 13 to 42. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 42 to get reminder 3. Add 3 to quotient.
\begin{array}{l}\phantom{13)}03\phantom{5}\\13\overline{)420}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}30\\\end{array}
Use the 3^{rd} digit 0 from dividend 420
\begin{array}{l}\phantom{13)}032\phantom{6}\\13\overline{)420}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}30\\\phantom{13)}\underline{\phantom{9}26\phantom{}}\\\phantom{13)99}4\\\end{array}
Find closest multiple of 13 to 30. We see that 2 \times 13 = 26 is the nearest. Now subtract 26 from 30 to get reminder 4. Add 2 to quotient.
\text{Quotient: }32 \text{Reminder: }4
Since 4 is less than 13, stop the division. The reminder is 4. The topmost line 032 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}