Evaluate
\frac{84}{61}\approx 1.37704918
Factor
\frac{2 ^ {2} \cdot 3 \cdot 7}{61} = 1\frac{23}{61} = 1.3770491803278688
Share
Copied to clipboard
\begin{array}{l}\phantom{305)}\phantom{1}\\305\overline{)420}\\\end{array}
Use the 1^{st} digit 4 from dividend 420
\begin{array}{l}\phantom{305)}0\phantom{2}\\305\overline{)420}\\\end{array}
Since 4 is less than 305, use the next digit 2 from dividend 420 and add 0 to the quotient
\begin{array}{l}\phantom{305)}0\phantom{3}\\305\overline{)420}\\\end{array}
Use the 2^{nd} digit 2 from dividend 420
\begin{array}{l}\phantom{305)}00\phantom{4}\\305\overline{)420}\\\end{array}
Since 42 is less than 305, use the next digit 0 from dividend 420 and add 0 to the quotient
\begin{array}{l}\phantom{305)}00\phantom{5}\\305\overline{)420}\\\end{array}
Use the 3^{rd} digit 0 from dividend 420
\begin{array}{l}\phantom{305)}001\phantom{6}\\305\overline{)420}\\\phantom{305)}\underline{\phantom{}305\phantom{}}\\\phantom{305)}115\\\end{array}
Find closest multiple of 305 to 420. We see that 1 \times 305 = 305 is the nearest. Now subtract 305 from 420 to get reminder 115. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }115
Since 115 is less than 305, stop the division. The reminder is 115. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}