Solve for t
t = \frac{\sqrt{345} + 45}{8} \approx 7.946771953
t = \frac{45 - \sqrt{345}}{8} \approx 3.303228047
Share
Copied to clipboard
-16t^{2}+180t=420
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+180t-420=0
Subtract 420 from both sides.
t=\frac{-180±\sqrt{180^{2}-4\left(-16\right)\left(-420\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 180 for b, and -420 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-180±\sqrt{32400-4\left(-16\right)\left(-420\right)}}{2\left(-16\right)}
Square 180.
t=\frac{-180±\sqrt{32400+64\left(-420\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-180±\sqrt{32400-26880}}{2\left(-16\right)}
Multiply 64 times -420.
t=\frac{-180±\sqrt{5520}}{2\left(-16\right)}
Add 32400 to -26880.
t=\frac{-180±4\sqrt{345}}{2\left(-16\right)}
Take the square root of 5520.
t=\frac{-180±4\sqrt{345}}{-32}
Multiply 2 times -16.
t=\frac{4\sqrt{345}-180}{-32}
Now solve the equation t=\frac{-180±4\sqrt{345}}{-32} when ± is plus. Add -180 to 4\sqrt{345}.
t=\frac{45-\sqrt{345}}{8}
Divide -180+4\sqrt{345} by -32.
t=\frac{-4\sqrt{345}-180}{-32}
Now solve the equation t=\frac{-180±4\sqrt{345}}{-32} when ± is minus. Subtract 4\sqrt{345} from -180.
t=\frac{\sqrt{345}+45}{8}
Divide -180-4\sqrt{345} by -32.
t=\frac{45-\sqrt{345}}{8} t=\frac{\sqrt{345}+45}{8}
The equation is now solved.
-16t^{2}+180t=420
Swap sides so that all variable terms are on the left hand side.
\frac{-16t^{2}+180t}{-16}=\frac{420}{-16}
Divide both sides by -16.
t^{2}+\frac{180}{-16}t=\frac{420}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{45}{4}t=\frac{420}{-16}
Reduce the fraction \frac{180}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{45}{4}t=-\frac{105}{4}
Reduce the fraction \frac{420}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{45}{4}t+\left(-\frac{45}{8}\right)^{2}=-\frac{105}{4}+\left(-\frac{45}{8}\right)^{2}
Divide -\frac{45}{4}, the coefficient of the x term, by 2 to get -\frac{45}{8}. Then add the square of -\frac{45}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{45}{4}t+\frac{2025}{64}=-\frac{105}{4}+\frac{2025}{64}
Square -\frac{45}{8} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{45}{4}t+\frac{2025}{64}=\frac{345}{64}
Add -\frac{105}{4} to \frac{2025}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{45}{8}\right)^{2}=\frac{345}{64}
Factor t^{2}-\frac{45}{4}t+\frac{2025}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{45}{8}\right)^{2}}=\sqrt{\frac{345}{64}}
Take the square root of both sides of the equation.
t-\frac{45}{8}=\frac{\sqrt{345}}{8} t-\frac{45}{8}=-\frac{\sqrt{345}}{8}
Simplify.
t=\frac{\sqrt{345}+45}{8} t=\frac{45-\sqrt{345}}{8}
Add \frac{45}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}