Factor
6\left(7x-1\right)\left(x+9\right)
Evaluate
6\left(7x-1\right)\left(x+9\right)
Graph
Share
Copied to clipboard
6\left(7x^{2}+62x-9\right)
Factor out 6.
a+b=62 ab=7\left(-9\right)=-63
Consider 7x^{2}+62x-9. Factor the expression by grouping. First, the expression needs to be rewritten as 7x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
-1,63 -3,21 -7,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -63.
-1+63=62 -3+21=18 -7+9=2
Calculate the sum for each pair.
a=-1 b=63
The solution is the pair that gives sum 62.
\left(7x^{2}-x\right)+\left(63x-9\right)
Rewrite 7x^{2}+62x-9 as \left(7x^{2}-x\right)+\left(63x-9\right).
x\left(7x-1\right)+9\left(7x-1\right)
Factor out x in the first and 9 in the second group.
\left(7x-1\right)\left(x+9\right)
Factor out common term 7x-1 by using distributive property.
6\left(7x-1\right)\left(x+9\right)
Rewrite the complete factored expression.
42x^{2}+372x-54=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-372±\sqrt{372^{2}-4\times 42\left(-54\right)}}{2\times 42}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-372±\sqrt{138384-4\times 42\left(-54\right)}}{2\times 42}
Square 372.
x=\frac{-372±\sqrt{138384-168\left(-54\right)}}{2\times 42}
Multiply -4 times 42.
x=\frac{-372±\sqrt{138384+9072}}{2\times 42}
Multiply -168 times -54.
x=\frac{-372±\sqrt{147456}}{2\times 42}
Add 138384 to 9072.
x=\frac{-372±384}{2\times 42}
Take the square root of 147456.
x=\frac{-372±384}{84}
Multiply 2 times 42.
x=\frac{12}{84}
Now solve the equation x=\frac{-372±384}{84} when ± is plus. Add -372 to 384.
x=\frac{1}{7}
Reduce the fraction \frac{12}{84} to lowest terms by extracting and canceling out 12.
x=-\frac{756}{84}
Now solve the equation x=\frac{-372±384}{84} when ± is minus. Subtract 384 from -372.
x=-9
Divide -756 by 84.
42x^{2}+372x-54=42\left(x-\frac{1}{7}\right)\left(x-\left(-9\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{7} for x_{1} and -9 for x_{2}.
42x^{2}+372x-54=42\left(x-\frac{1}{7}\right)\left(x+9\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
42x^{2}+372x-54=42\times \frac{7x-1}{7}\left(x+9\right)
Subtract \frac{1}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
42x^{2}+372x-54=6\left(7x-1\right)\left(x+9\right)
Cancel out 7, the greatest common factor in 42 and 7.
x ^ 2 +\frac{62}{7}x -\frac{9}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 42
r + s = -\frac{62}{7} rs = -\frac{9}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{31}{7} - u s = -\frac{31}{7} + u
Two numbers r and s sum up to -\frac{62}{7} exactly when the average of the two numbers is \frac{1}{2}*-\frac{62}{7} = -\frac{31}{7}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{31}{7} - u) (-\frac{31}{7} + u) = -\frac{9}{7}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{9}{7}
\frac{961}{49} - u^2 = -\frac{9}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{9}{7}-\frac{961}{49} = -\frac{1024}{49}
Simplify the expression by subtracting \frac{961}{49} on both sides
u^2 = \frac{1024}{49} u = \pm\sqrt{\frac{1024}{49}} = \pm \frac{32}{7}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{31}{7} - \frac{32}{7} = -9 s = -\frac{31}{7} + \frac{32}{7} = 0.143
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}