Factor
\left(3m-7\right)\left(14m+3\right)
Evaluate
\left(3m-7\right)\left(14m+3\right)
Share
Copied to clipboard
a+b=-89 ab=42\left(-21\right)=-882
Factor the expression by grouping. First, the expression needs to be rewritten as 42m^{2}+am+bm-21. To find a and b, set up a system to be solved.
1,-882 2,-441 3,-294 6,-147 7,-126 9,-98 14,-63 18,-49 21,-42
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -882.
1-882=-881 2-441=-439 3-294=-291 6-147=-141 7-126=-119 9-98=-89 14-63=-49 18-49=-31 21-42=-21
Calculate the sum for each pair.
a=-98 b=9
The solution is the pair that gives sum -89.
\left(42m^{2}-98m\right)+\left(9m-21\right)
Rewrite 42m^{2}-89m-21 as \left(42m^{2}-98m\right)+\left(9m-21\right).
14m\left(3m-7\right)+3\left(3m-7\right)
Factor out 14m in the first and 3 in the second group.
\left(3m-7\right)\left(14m+3\right)
Factor out common term 3m-7 by using distributive property.
42m^{2}-89m-21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-89\right)±\sqrt{\left(-89\right)^{2}-4\times 42\left(-21\right)}}{2\times 42}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-89\right)±\sqrt{7921-4\times 42\left(-21\right)}}{2\times 42}
Square -89.
m=\frac{-\left(-89\right)±\sqrt{7921-168\left(-21\right)}}{2\times 42}
Multiply -4 times 42.
m=\frac{-\left(-89\right)±\sqrt{7921+3528}}{2\times 42}
Multiply -168 times -21.
m=\frac{-\left(-89\right)±\sqrt{11449}}{2\times 42}
Add 7921 to 3528.
m=\frac{-\left(-89\right)±107}{2\times 42}
Take the square root of 11449.
m=\frac{89±107}{2\times 42}
The opposite of -89 is 89.
m=\frac{89±107}{84}
Multiply 2 times 42.
m=\frac{196}{84}
Now solve the equation m=\frac{89±107}{84} when ± is plus. Add 89 to 107.
m=\frac{7}{3}
Reduce the fraction \frac{196}{84} to lowest terms by extracting and canceling out 28.
m=-\frac{18}{84}
Now solve the equation m=\frac{89±107}{84} when ± is minus. Subtract 107 from 89.
m=-\frac{3}{14}
Reduce the fraction \frac{-18}{84} to lowest terms by extracting and canceling out 6.
42m^{2}-89m-21=42\left(m-\frac{7}{3}\right)\left(m-\left(-\frac{3}{14}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{3} for x_{1} and -\frac{3}{14} for x_{2}.
42m^{2}-89m-21=42\left(m-\frac{7}{3}\right)\left(m+\frac{3}{14}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
42m^{2}-89m-21=42\times \frac{3m-7}{3}\left(m+\frac{3}{14}\right)
Subtract \frac{7}{3} from m by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
42m^{2}-89m-21=42\times \frac{3m-7}{3}\times \frac{14m+3}{14}
Add \frac{3}{14} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
42m^{2}-89m-21=42\times \frac{\left(3m-7\right)\left(14m+3\right)}{3\times 14}
Multiply \frac{3m-7}{3} times \frac{14m+3}{14} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
42m^{2}-89m-21=42\times \frac{\left(3m-7\right)\left(14m+3\right)}{42}
Multiply 3 times 14.
42m^{2}-89m-21=\left(3m-7\right)\left(14m+3\right)
Cancel out 42, the greatest common factor in 42 and 42.
x ^ 2 -\frac{89}{42}x -\frac{1}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 42
r + s = \frac{89}{42} rs = -\frac{1}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{89}{84} - u s = \frac{89}{84} + u
Two numbers r and s sum up to \frac{89}{42} exactly when the average of the two numbers is \frac{1}{2}*\frac{89}{42} = \frac{89}{84}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{89}{84} - u) (\frac{89}{84} + u) = -\frac{1}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{2}
\frac{7921}{7056} - u^2 = -\frac{1}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{2}-\frac{7921}{7056} = -\frac{11449}{7056}
Simplify the expression by subtracting \frac{7921}{7056} on both sides
u^2 = \frac{11449}{7056} u = \pm\sqrt{\frac{11449}{7056}} = \pm \frac{107}{84}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{89}{84} - \frac{107}{84} = -0.214 s = \frac{89}{84} + \frac{107}{84} = 2.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}