Solve for f
f=\frac{11}{42}\approx 0.261904762
f=0
Share
Copied to clipboard
f\left(42f-11\right)=0
Factor out f.
f=0 f=\frac{11}{42}
To find equation solutions, solve f=0 and 42f-11=0.
42f^{2}-11f=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
f=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}}}{2\times 42}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 42 for a, -11 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
f=\frac{-\left(-11\right)±11}{2\times 42}
Take the square root of \left(-11\right)^{2}.
f=\frac{11±11}{2\times 42}
The opposite of -11 is 11.
f=\frac{11±11}{84}
Multiply 2 times 42.
f=\frac{22}{84}
Now solve the equation f=\frac{11±11}{84} when ± is plus. Add 11 to 11.
f=\frac{11}{42}
Reduce the fraction \frac{22}{84} to lowest terms by extracting and canceling out 2.
f=\frac{0}{84}
Now solve the equation f=\frac{11±11}{84} when ± is minus. Subtract 11 from 11.
f=0
Divide 0 by 84.
f=\frac{11}{42} f=0
The equation is now solved.
42f^{2}-11f=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{42f^{2}-11f}{42}=\frac{0}{42}
Divide both sides by 42.
f^{2}-\frac{11}{42}f=\frac{0}{42}
Dividing by 42 undoes the multiplication by 42.
f^{2}-\frac{11}{42}f=0
Divide 0 by 42.
f^{2}-\frac{11}{42}f+\left(-\frac{11}{84}\right)^{2}=\left(-\frac{11}{84}\right)^{2}
Divide -\frac{11}{42}, the coefficient of the x term, by 2 to get -\frac{11}{84}. Then add the square of -\frac{11}{84} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
f^{2}-\frac{11}{42}f+\frac{121}{7056}=\frac{121}{7056}
Square -\frac{11}{84} by squaring both the numerator and the denominator of the fraction.
\left(f-\frac{11}{84}\right)^{2}=\frac{121}{7056}
Factor f^{2}-\frac{11}{42}f+\frac{121}{7056}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(f-\frac{11}{84}\right)^{2}}=\sqrt{\frac{121}{7056}}
Take the square root of both sides of the equation.
f-\frac{11}{84}=\frac{11}{84} f-\frac{11}{84}=-\frac{11}{84}
Simplify.
f=\frac{11}{42} f=0
Add \frac{11}{84} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}