Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(7c^{2}+4c\right)
Factor out 6.
c\left(7c+4\right)
Consider 7c^{2}+4c. Factor out c.
6c\left(7c+4\right)
Rewrite the complete factored expression.
42c^{2}+24c=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-24±\sqrt{24^{2}}}{2\times 42}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-24±24}{2\times 42}
Take the square root of 24^{2}.
c=\frac{-24±24}{84}
Multiply 2 times 42.
c=\frac{0}{84}
Now solve the equation c=\frac{-24±24}{84} when ± is plus. Add -24 to 24.
c=0
Divide 0 by 84.
c=-\frac{48}{84}
Now solve the equation c=\frac{-24±24}{84} when ± is minus. Subtract 24 from -24.
c=-\frac{4}{7}
Reduce the fraction \frac{-48}{84} to lowest terms by extracting and canceling out 12.
42c^{2}+24c=42c\left(c-\left(-\frac{4}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{4}{7} for x_{2}.
42c^{2}+24c=42c\left(c+\frac{4}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
42c^{2}+24c=42c\times \frac{7c+4}{7}
Add \frac{4}{7} to c by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
42c^{2}+24c=6c\left(7c+4\right)
Cancel out 7, the greatest common factor in 42 and 7.