Factor
3a\left(7a-3\right)\left(2a+3\right)
Evaluate
3a\left(7a-3\right)\left(2a+3\right)
Share
Copied to clipboard
3\left(14a^{3}+15a^{2}-9a\right)
Factor out 3.
a\left(14a^{2}+15a-9\right)
Consider 14a^{3}+15a^{2}-9a. Factor out a.
p+q=15 pq=14\left(-9\right)=-126
Consider 14a^{2}+15a-9. Factor the expression by grouping. First, the expression needs to be rewritten as 14a^{2}+pa+qa-9. To find p and q, set up a system to be solved.
-1,126 -2,63 -3,42 -6,21 -7,18 -9,14
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -126.
-1+126=125 -2+63=61 -3+42=39 -6+21=15 -7+18=11 -9+14=5
Calculate the sum for each pair.
p=-6 q=21
The solution is the pair that gives sum 15.
\left(14a^{2}-6a\right)+\left(21a-9\right)
Rewrite 14a^{2}+15a-9 as \left(14a^{2}-6a\right)+\left(21a-9\right).
2a\left(7a-3\right)+3\left(7a-3\right)
Factor out 2a in the first and 3 in the second group.
\left(7a-3\right)\left(2a+3\right)
Factor out common term 7a-3 by using distributive property.
3a\left(7a-3\right)\left(2a+3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}