Evaluate
84\left(\sqrt{6}-2\right)\approx 37.757138394
Share
Copied to clipboard
\left(42+42\sqrt{2}-42\sqrt{3}\right)\left(1-\sqrt{2}+\sqrt{3}\right)
Use the distributive property to multiply 42 by 1+\sqrt{2}-\sqrt{3}.
42-42\sqrt{2}+42\sqrt{3}+42\sqrt{2}-42\left(\sqrt{2}\right)^{2}+42\sqrt{2}\sqrt{3}-42\sqrt{3}+42\sqrt{3}\sqrt{2}-42\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of 42+42\sqrt{2}-42\sqrt{3} by each term of 1-\sqrt{2}+\sqrt{3}.
42+42\sqrt{3}-42\left(\sqrt{2}\right)^{2}+42\sqrt{2}\sqrt{3}-42\sqrt{3}+42\sqrt{3}\sqrt{2}-42\left(\sqrt{3}\right)^{2}
Combine -42\sqrt{2} and 42\sqrt{2} to get 0.
42+42\sqrt{3}-42\times 2+42\sqrt{2}\sqrt{3}-42\sqrt{3}+42\sqrt{3}\sqrt{2}-42\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
42+42\sqrt{3}-84+42\sqrt{2}\sqrt{3}-42\sqrt{3}+42\sqrt{3}\sqrt{2}-42\left(\sqrt{3}\right)^{2}
Multiply -42 and 2 to get -84.
-42+42\sqrt{3}+42\sqrt{2}\sqrt{3}-42\sqrt{3}+42\sqrt{3}\sqrt{2}-42\left(\sqrt{3}\right)^{2}
Subtract 84 from 42 to get -42.
-42+42\sqrt{3}+42\sqrt{6}-42\sqrt{3}+42\sqrt{3}\sqrt{2}-42\left(\sqrt{3}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-42+42\sqrt{6}+42\sqrt{3}\sqrt{2}-42\left(\sqrt{3}\right)^{2}
Combine 42\sqrt{3} and -42\sqrt{3} to get 0.
-42+42\sqrt{6}+42\sqrt{6}-42\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-42+84\sqrt{6}-42\left(\sqrt{3}\right)^{2}
Combine 42\sqrt{6} and 42\sqrt{6} to get 84\sqrt{6}.
-42+84\sqrt{6}-42\times 3
The square of \sqrt{3} is 3.
-42+84\sqrt{6}-126
Multiply -42 and 3 to get -126.
-168+84\sqrt{6}
Subtract 126 from -42 to get -168.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}