Evaluate
\frac{697802}{1137}\approx 613.722075638
Factor
\frac{2 \cdot 7 \cdot 49843}{3 \cdot 379} = 613\frac{821}{1137} = 613.7220756376429
Share
Copied to clipboard
\frac{21}{379}+458\times \frac{1\times 3+1}{3}-1+4
Reduce the fraction \frac{42}{758} to lowest terms by extracting and canceling out 2.
\frac{21}{379}+458\times \frac{3+1}{3}-1+4
Multiply 1 and 3 to get 3.
\frac{21}{379}+458\times \frac{4}{3}-1+4
Add 3 and 1 to get 4.
\frac{21}{379}+\frac{458\times 4}{3}-1+4
Express 458\times \frac{4}{3} as a single fraction.
\frac{21}{379}+\frac{1832}{3}-1+4
Multiply 458 and 4 to get 1832.
\frac{63}{1137}+\frac{694328}{1137}-1+4
Least common multiple of 379 and 3 is 1137. Convert \frac{21}{379} and \frac{1832}{3} to fractions with denominator 1137.
\frac{63+694328}{1137}-1+4
Since \frac{63}{1137} and \frac{694328}{1137} have the same denominator, add them by adding their numerators.
\frac{694391}{1137}-1+4
Add 63 and 694328 to get 694391.
\frac{694391}{1137}-\frac{1137}{1137}+4
Convert 1 to fraction \frac{1137}{1137}.
\frac{694391-1137}{1137}+4
Since \frac{694391}{1137} and \frac{1137}{1137} have the same denominator, subtract them by subtracting their numerators.
\frac{693254}{1137}+4
Subtract 1137 from 694391 to get 693254.
\frac{693254}{1137}+\frac{4548}{1137}
Convert 4 to fraction \frac{4548}{1137}.
\frac{693254+4548}{1137}
Since \frac{693254}{1137} and \frac{4548}{1137} have the same denominator, add them by adding their numerators.
\frac{697802}{1137}
Add 693254 and 4548 to get 697802.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}