Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

42=4\left(x^{2}-4x+4\right)+6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
42=4x^{2}-16x+16+6
Use the distributive property to multiply 4 by x^{2}-4x+4.
42=4x^{2}-16x+22
Add 16 and 6 to get 22.
4x^{2}-16x+22=42
Swap sides so that all variable terms are on the left hand side.
4x^{2}-16x+22-42=0
Subtract 42 from both sides.
4x^{2}-16x-20=0
Subtract 42 from 22 to get -20.
x^{2}-4x-5=0
Divide both sides by 4.
a+b=-4 ab=1\left(-5\right)=-5
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
a=-5 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-5x\right)+\left(x-5\right)
Rewrite x^{2}-4x-5 as \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Factor out x in x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Factor out common term x-5 by using distributive property.
x=5 x=-1
To find equation solutions, solve x-5=0 and x+1=0.
42=4\left(x^{2}-4x+4\right)+6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
42=4x^{2}-16x+16+6
Use the distributive property to multiply 4 by x^{2}-4x+4.
42=4x^{2}-16x+22
Add 16 and 6 to get 22.
4x^{2}-16x+22=42
Swap sides so that all variable terms are on the left hand side.
4x^{2}-16x+22-42=0
Subtract 42 from both sides.
4x^{2}-16x-20=0
Subtract 42 from 22 to get -20.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\left(-20\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -16 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\left(-20\right)}}{2\times 4}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-16\left(-20\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-16\right)±\sqrt{256+320}}{2\times 4}
Multiply -16 times -20.
x=\frac{-\left(-16\right)±\sqrt{576}}{2\times 4}
Add 256 to 320.
x=\frac{-\left(-16\right)±24}{2\times 4}
Take the square root of 576.
x=\frac{16±24}{2\times 4}
The opposite of -16 is 16.
x=\frac{16±24}{8}
Multiply 2 times 4.
x=\frac{40}{8}
Now solve the equation x=\frac{16±24}{8} when ± is plus. Add 16 to 24.
x=5
Divide 40 by 8.
x=-\frac{8}{8}
Now solve the equation x=\frac{16±24}{8} when ± is minus. Subtract 24 from 16.
x=-1
Divide -8 by 8.
x=5 x=-1
The equation is now solved.
42=4\left(x^{2}-4x+4\right)+6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
42=4x^{2}-16x+16+6
Use the distributive property to multiply 4 by x^{2}-4x+4.
42=4x^{2}-16x+22
Add 16 and 6 to get 22.
4x^{2}-16x+22=42
Swap sides so that all variable terms are on the left hand side.
4x^{2}-16x=42-22
Subtract 22 from both sides.
4x^{2}-16x=20
Subtract 22 from 42 to get 20.
\frac{4x^{2}-16x}{4}=\frac{20}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{16}{4}\right)x=\frac{20}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-4x=\frac{20}{4}
Divide -16 by 4.
x^{2}-4x=5
Divide 20 by 4.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=5+4
Square -2.
x^{2}-4x+4=9
Add 5 to 4.
\left(x-2\right)^{2}=9
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-2=3 x-2=-3
Simplify.
x=5 x=-1
Add 2 to both sides of the equation.