Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4183.92+156x=6.5\times 10^{4}x^{2}
Multiply 2 and 78 to get 156.
4183.92+156x=6.5\times 10000x^{2}
Calculate 10 to the power of 4 and get 10000.
4183.92+156x=65000x^{2}
Multiply 6.5 and 10000 to get 65000.
4183.92+156x-65000x^{2}=0
Subtract 65000x^{2} from both sides.
-65000x^{2}+156x+4183.92=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-156±\sqrt{156^{2}-4\left(-65000\right)\times 4183.92}}{2\left(-65000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -65000 for a, 156 for b, and 4183.92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-156±\sqrt{24336-4\left(-65000\right)\times 4183.92}}{2\left(-65000\right)}
Square 156.
x=\frac{-156±\sqrt{24336+260000\times 4183.92}}{2\left(-65000\right)}
Multiply -4 times -65000.
x=\frac{-156±\sqrt{24336+1087819200}}{2\left(-65000\right)}
Multiply 260000 times 4183.92.
x=\frac{-156±\sqrt{1087843536}}{2\left(-65000\right)}
Add 24336 to 1087819200.
x=\frac{-156±156\sqrt{44701}}{2\left(-65000\right)}
Take the square root of 1087843536.
x=\frac{-156±156\sqrt{44701}}{-130000}
Multiply 2 times -65000.
x=\frac{156\sqrt{44701}-156}{-130000}
Now solve the equation x=\frac{-156±156\sqrt{44701}}{-130000} when ± is plus. Add -156 to 156\sqrt{44701}.
x=\frac{3-3\sqrt{44701}}{2500}
Divide -156+156\sqrt{44701} by -130000.
x=\frac{-156\sqrt{44701}-156}{-130000}
Now solve the equation x=\frac{-156±156\sqrt{44701}}{-130000} when ± is minus. Subtract 156\sqrt{44701} from -156.
x=\frac{3\sqrt{44701}+3}{2500}
Divide -156-156\sqrt{44701} by -130000.
x=\frac{3-3\sqrt{44701}}{2500} x=\frac{3\sqrt{44701}+3}{2500}
The equation is now solved.
4183.92+156x=6.5\times 10^{4}x^{2}
Multiply 2 and 78 to get 156.
4183.92+156x=6.5\times 10000x^{2}
Calculate 10 to the power of 4 and get 10000.
4183.92+156x=65000x^{2}
Multiply 6.5 and 10000 to get 65000.
4183.92+156x-65000x^{2}=0
Subtract 65000x^{2} from both sides.
156x-65000x^{2}=-4183.92
Subtract 4183.92 from both sides. Anything subtracted from zero gives its negation.
-65000x^{2}+156x=-4183.92
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-65000x^{2}+156x}{-65000}=-\frac{4183.92}{-65000}
Divide both sides by -65000.
x^{2}+\frac{156}{-65000}x=-\frac{4183.92}{-65000}
Dividing by -65000 undoes the multiplication by -65000.
x^{2}-\frac{3}{1250}x=-\frac{4183.92}{-65000}
Reduce the fraction \frac{156}{-65000} to lowest terms by extracting and canceling out 52.
x^{2}-\frac{3}{1250}x=0.064368
Divide -4183.92 by -65000.
x^{2}-\frac{3}{1250}x+\left(-\frac{3}{2500}\right)^{2}=0.064368+\left(-\frac{3}{2500}\right)^{2}
Divide -\frac{3}{1250}, the coefficient of the x term, by 2 to get -\frac{3}{2500}. Then add the square of -\frac{3}{2500} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{1250}x+\frac{9}{6250000}=0.064368+\frac{9}{6250000}
Square -\frac{3}{2500} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{1250}x+\frac{9}{6250000}=\frac{402309}{6250000}
Add 0.064368 to \frac{9}{6250000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2500}\right)^{2}=\frac{402309}{6250000}
Factor x^{2}-\frac{3}{1250}x+\frac{9}{6250000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2500}\right)^{2}}=\sqrt{\frac{402309}{6250000}}
Take the square root of both sides of the equation.
x-\frac{3}{2500}=\frac{3\sqrt{44701}}{2500} x-\frac{3}{2500}=-\frac{3\sqrt{44701}}{2500}
Simplify.
x=\frac{3\sqrt{44701}+3}{2500} x=\frac{3-3\sqrt{44701}}{2500}
Add \frac{3}{2500} to both sides of the equation.