Evaluate
\frac{19}{11}\approx 1.727272727
Factor
\frac{19}{11} = 1\frac{8}{11} = 1.7272727272727273
Share
Copied to clipboard
\begin{array}{l}\phantom{242)}\phantom{1}\\242\overline{)418}\\\end{array}
Use the 1^{st} digit 4 from dividend 418
\begin{array}{l}\phantom{242)}0\phantom{2}\\242\overline{)418}\\\end{array}
Since 4 is less than 242, use the next digit 1 from dividend 418 and add 0 to the quotient
\begin{array}{l}\phantom{242)}0\phantom{3}\\242\overline{)418}\\\end{array}
Use the 2^{nd} digit 1 from dividend 418
\begin{array}{l}\phantom{242)}00\phantom{4}\\242\overline{)418}\\\end{array}
Since 41 is less than 242, use the next digit 8 from dividend 418 and add 0 to the quotient
\begin{array}{l}\phantom{242)}00\phantom{5}\\242\overline{)418}\\\end{array}
Use the 3^{rd} digit 8 from dividend 418
\begin{array}{l}\phantom{242)}001\phantom{6}\\242\overline{)418}\\\phantom{242)}\underline{\phantom{}242\phantom{}}\\\phantom{242)}176\\\end{array}
Find closest multiple of 242 to 418. We see that 1 \times 242 = 242 is the nearest. Now subtract 242 from 418 to get reminder 176. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }176
Since 176 is less than 242, stop the division. The reminder is 176. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}