Evaluate
\frac{207}{32}=6.46875
Factor
\frac{3 ^ {2} \cdot 23}{2 ^ {5}} = 6\frac{15}{32} = 6.46875
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)414}\\\end{array}
Use the 1^{st} digit 4 from dividend 414
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)414}\\\end{array}
Since 4 is less than 64, use the next digit 1 from dividend 414 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)414}\\\end{array}
Use the 2^{nd} digit 1 from dividend 414
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)414}\\\end{array}
Since 41 is less than 64, use the next digit 4 from dividend 414 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)414}\\\end{array}
Use the 3^{rd} digit 4 from dividend 414
\begin{array}{l}\phantom{64)}006\phantom{6}\\64\overline{)414}\\\phantom{64)}\underline{\phantom{}384\phantom{}}\\\phantom{64)9}30\\\end{array}
Find closest multiple of 64 to 414. We see that 6 \times 64 = 384 is the nearest. Now subtract 384 from 414 to get reminder 30. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }30
Since 30 is less than 64, stop the division. The reminder is 30. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}