Evaluate
\frac{414}{25}=16.56
Factor
\frac{2 \cdot 3 ^ {2} \cdot 23}{5 ^ {2}} = 16\frac{14}{25} = 16.56
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)414}\\\end{array}
Use the 1^{st} digit 4 from dividend 414
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)414}\\\end{array}
Since 4 is less than 25, use the next digit 1 from dividend 414 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)414}\\\end{array}
Use the 2^{nd} digit 1 from dividend 414
\begin{array}{l}\phantom{25)}01\phantom{4}\\25\overline{)414}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}16\\\end{array}
Find closest multiple of 25 to 41. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 41 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{25)}01\phantom{5}\\25\overline{)414}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}164\\\end{array}
Use the 3^{rd} digit 4 from dividend 414
\begin{array}{l}\phantom{25)}016\phantom{6}\\25\overline{)414}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}164\\\phantom{25)}\underline{\phantom{}150\phantom{}}\\\phantom{25)9}14\\\end{array}
Find closest multiple of 25 to 164. We see that 6 \times 25 = 150 is the nearest. Now subtract 150 from 164 to get reminder 14. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }14
Since 14 is less than 25, stop the division. The reminder is 14. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}