Evaluate
\frac{20500}{3}\approx 6833.333333333
Factor
\frac{2 ^ {2} \cdot 5 ^ {3} \cdot 41}{3} = 6833\frac{1}{3} = 6833.333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)410000}\\\end{array}
Use the 1^{st} digit 4 from dividend 410000
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)410000}\\\end{array}
Since 4 is less than 60, use the next digit 1 from dividend 410000 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)410000}\\\end{array}
Use the 2^{nd} digit 1 from dividend 410000
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)410000}\\\end{array}
Since 41 is less than 60, use the next digit 0 from dividend 410000 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)410000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 410000
\begin{array}{l}\phantom{60)}006\phantom{6}\\60\overline{)410000}\\\phantom{60)}\underline{\phantom{}360\phantom{999}}\\\phantom{60)9}50\\\end{array}
Find closest multiple of 60 to 410. We see that 6 \times 60 = 360 is the nearest. Now subtract 360 from 410 to get reminder 50. Add 6 to quotient.
\begin{array}{l}\phantom{60)}006\phantom{7}\\60\overline{)410000}\\\phantom{60)}\underline{\phantom{}360\phantom{999}}\\\phantom{60)9}500\\\end{array}
Use the 4^{th} digit 0 from dividend 410000
\begin{array}{l}\phantom{60)}0068\phantom{8}\\60\overline{)410000}\\\phantom{60)}\underline{\phantom{}360\phantom{999}}\\\phantom{60)9}500\\\phantom{60)}\underline{\phantom{9}480\phantom{99}}\\\phantom{60)99}20\\\end{array}
Find closest multiple of 60 to 500. We see that 8 \times 60 = 480 is the nearest. Now subtract 480 from 500 to get reminder 20. Add 8 to quotient.
\begin{array}{l}\phantom{60)}0068\phantom{9}\\60\overline{)410000}\\\phantom{60)}\underline{\phantom{}360\phantom{999}}\\\phantom{60)9}500\\\phantom{60)}\underline{\phantom{9}480\phantom{99}}\\\phantom{60)99}200\\\end{array}
Use the 5^{th} digit 0 from dividend 410000
\begin{array}{l}\phantom{60)}00683\phantom{10}\\60\overline{)410000}\\\phantom{60)}\underline{\phantom{}360\phantom{999}}\\\phantom{60)9}500\\\phantom{60)}\underline{\phantom{9}480\phantom{99}}\\\phantom{60)99}200\\\phantom{60)}\underline{\phantom{99}180\phantom{9}}\\\phantom{60)999}20\\\end{array}
Find closest multiple of 60 to 200. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 200 to get reminder 20. Add 3 to quotient.
\begin{array}{l}\phantom{60)}00683\phantom{11}\\60\overline{)410000}\\\phantom{60)}\underline{\phantom{}360\phantom{999}}\\\phantom{60)9}500\\\phantom{60)}\underline{\phantom{9}480\phantom{99}}\\\phantom{60)99}200\\\phantom{60)}\underline{\phantom{99}180\phantom{9}}\\\phantom{60)999}200\\\end{array}
Use the 6^{th} digit 0 from dividend 410000
\begin{array}{l}\phantom{60)}006833\phantom{12}\\60\overline{)410000}\\\phantom{60)}\underline{\phantom{}360\phantom{999}}\\\phantom{60)9}500\\\phantom{60)}\underline{\phantom{9}480\phantom{99}}\\\phantom{60)99}200\\\phantom{60)}\underline{\phantom{99}180\phantom{9}}\\\phantom{60)999}200\\\phantom{60)}\underline{\phantom{999}180\phantom{}}\\\phantom{60)9999}20\\\end{array}
Find closest multiple of 60 to 200. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 200 to get reminder 20. Add 3 to quotient.
\text{Quotient: }6833 \text{Reminder: }20
Since 20 is less than 60, stop the division. The reminder is 20. The topmost line 006833 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6833.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}