Evaluate
\frac{205}{8}=25.625
Factor
\frac{5 \cdot 41}{2 ^ {3}} = 25\frac{5}{8} = 25.625
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)410}\\\end{array}
Use the 1^{st} digit 4 from dividend 410
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)410}\\\end{array}
Since 4 is less than 16, use the next digit 1 from dividend 410 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)410}\\\end{array}
Use the 2^{nd} digit 1 from dividend 410
\begin{array}{l}\phantom{16)}02\phantom{4}\\16\overline{)410}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}9\\\end{array}
Find closest multiple of 16 to 41. We see that 2 \times 16 = 32 is the nearest. Now subtract 32 from 41 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{16)}02\phantom{5}\\16\overline{)410}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}90\\\end{array}
Use the 3^{rd} digit 0 from dividend 410
\begin{array}{l}\phantom{16)}025\phantom{6}\\16\overline{)410}\\\phantom{16)}\underline{\phantom{}32\phantom{9}}\\\phantom{16)9}90\\\phantom{16)}\underline{\phantom{9}80\phantom{}}\\\phantom{16)9}10\\\end{array}
Find closest multiple of 16 to 90. We see that 5 \times 16 = 80 is the nearest. Now subtract 80 from 90 to get reminder 10. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }10
Since 10 is less than 16, stop the division. The reminder is 10. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}