Evaluate
\frac{82}{3}\approx 27.333333333
Factor
\frac{2 \cdot 41}{3} = 27\frac{1}{3} = 27.333333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)410}\\\end{array}
Use the 1^{st} digit 4 from dividend 410
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)410}\\\end{array}
Since 4 is less than 15, use the next digit 1 from dividend 410 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)410}\\\end{array}
Use the 2^{nd} digit 1 from dividend 410
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)410}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}11\\\end{array}
Find closest multiple of 15 to 41. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 41 to get reminder 11. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)410}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}110\\\end{array}
Use the 3^{rd} digit 0 from dividend 410
\begin{array}{l}\phantom{15)}027\phantom{6}\\15\overline{)410}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}110\\\phantom{15)}\underline{\phantom{}105\phantom{}}\\\phantom{15)99}5\\\end{array}
Find closest multiple of 15 to 110. We see that 7 \times 15 = 105 is the nearest. Now subtract 105 from 110 to get reminder 5. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }5
Since 5 is less than 15, stop the division. The reminder is 5. The topmost line 027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}