Evaluate
\frac{1679}{45}\approx 37.311111111
Factor
\frac{23 \cdot 73}{3 ^ {2} \cdot 5} = 37\frac{14}{45} = 37.31111111111111
Share
Copied to clipboard
\frac{41\times 5}{6}+\frac{41-\frac{3\times 15+4}{15}}{12}
Express 41\times \frac{5}{6} as a single fraction.
\frac{205}{6}+\frac{41-\frac{3\times 15+4}{15}}{12}
Multiply 41 and 5 to get 205.
\frac{205}{6}+\frac{41-\frac{45+4}{15}}{12}
Multiply 3 and 15 to get 45.
\frac{205}{6}+\frac{41-\frac{49}{15}}{12}
Add 45 and 4 to get 49.
\frac{205}{6}+\frac{\frac{615}{15}-\frac{49}{15}}{12}
Convert 41 to fraction \frac{615}{15}.
\frac{205}{6}+\frac{\frac{615-49}{15}}{12}
Since \frac{615}{15} and \frac{49}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{205}{6}+\frac{\frac{566}{15}}{12}
Subtract 49 from 615 to get 566.
\frac{205}{6}+\frac{566}{15\times 12}
Express \frac{\frac{566}{15}}{12} as a single fraction.
\frac{205}{6}+\frac{566}{180}
Multiply 15 and 12 to get 180.
\frac{205}{6}+\frac{283}{90}
Reduce the fraction \frac{566}{180} to lowest terms by extracting and canceling out 2.
\frac{3075}{90}+\frac{283}{90}
Least common multiple of 6 and 90 is 90. Convert \frac{205}{6} and \frac{283}{90} to fractions with denominator 90.
\frac{3075+283}{90}
Since \frac{3075}{90} and \frac{283}{90} have the same denominator, add them by adding their numerators.
\frac{3358}{90}
Add 3075 and 283 to get 3358.
\frac{1679}{45}
Reduce the fraction \frac{3358}{90} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}