Solve for v
v=\frac{20869}{48015}\approx 0.43463501
Share
Copied to clipboard
41+53v+32648=-788\left(-61v-15\right)
Use the distributive property to multiply 53 by v+616.
32689+53v=-788\left(-61v-15\right)
Add 41 and 32648 to get 32689.
32689+53v=48068v+11820
Use the distributive property to multiply -788 by -61v-15.
32689+53v-48068v=11820
Subtract 48068v from both sides.
32689-48015v=11820
Combine 53v and -48068v to get -48015v.
-48015v=11820-32689
Subtract 32689 from both sides.
-48015v=-20869
Subtract 32689 from 11820 to get -20869.
v=\frac{-20869}{-48015}
Divide both sides by -48015.
v=\frac{20869}{48015}
Fraction \frac{-20869}{-48015} can be simplified to \frac{20869}{48015} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}