Solve for x
x=14
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
46x-80+12-3x^{2}+6x-6x+12=0
Combine 40x and 6x to get 46x.
46x-68-3x^{2}+6x-6x+12=0
Add -80 and 12 to get -68.
52x-68-3x^{2}-6x+12=0
Combine 46x and 6x to get 52x.
46x-68-3x^{2}+12=0
Combine 52x and -6x to get 46x.
46x-56-3x^{2}=0
Add -68 and 12 to get -56.
-3x^{2}+46x-56=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=46 ab=-3\left(-56\right)=168
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-56. To find a and b, set up a system to be solved.
1,168 2,84 3,56 4,42 6,28 7,24 8,21 12,14
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 168.
1+168=169 2+84=86 3+56=59 4+42=46 6+28=34 7+24=31 8+21=29 12+14=26
Calculate the sum for each pair.
a=42 b=4
The solution is the pair that gives sum 46.
\left(-3x^{2}+42x\right)+\left(4x-56\right)
Rewrite -3x^{2}+46x-56 as \left(-3x^{2}+42x\right)+\left(4x-56\right).
3x\left(-x+14\right)-4\left(-x+14\right)
Factor out 3x in the first and -4 in the second group.
\left(-x+14\right)\left(3x-4\right)
Factor out common term -x+14 by using distributive property.
x=14 x=\frac{4}{3}
To find equation solutions, solve -x+14=0 and 3x-4=0.
46x-80+12-3x^{2}+6x-6x+12=0
Combine 40x and 6x to get 46x.
46x-68-3x^{2}+6x-6x+12=0
Add -80 and 12 to get -68.
52x-68-3x^{2}-6x+12=0
Combine 46x and 6x to get 52x.
46x-68-3x^{2}+12=0
Combine 52x and -6x to get 46x.
46x-56-3x^{2}=0
Add -68 and 12 to get -56.
-3x^{2}+46x-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-46±\sqrt{46^{2}-4\left(-3\right)\left(-56\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 46 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-46±\sqrt{2116-4\left(-3\right)\left(-56\right)}}{2\left(-3\right)}
Square 46.
x=\frac{-46±\sqrt{2116+12\left(-56\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-46±\sqrt{2116-672}}{2\left(-3\right)}
Multiply 12 times -56.
x=\frac{-46±\sqrt{1444}}{2\left(-3\right)}
Add 2116 to -672.
x=\frac{-46±38}{2\left(-3\right)}
Take the square root of 1444.
x=\frac{-46±38}{-6}
Multiply 2 times -3.
x=-\frac{8}{-6}
Now solve the equation x=\frac{-46±38}{-6} when ± is plus. Add -46 to 38.
x=\frac{4}{3}
Reduce the fraction \frac{-8}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{84}{-6}
Now solve the equation x=\frac{-46±38}{-6} when ± is minus. Subtract 38 from -46.
x=14
Divide -84 by -6.
x=\frac{4}{3} x=14
The equation is now solved.
46x-80+12-3x^{2}+6x-6x+12=0
Combine 40x and 6x to get 46x.
46x-68-3x^{2}+6x-6x+12=0
Add -80 and 12 to get -68.
52x-68-3x^{2}-6x+12=0
Combine 46x and 6x to get 52x.
46x-68-3x^{2}+12=0
Combine 52x and -6x to get 46x.
46x-56-3x^{2}=0
Add -68 and 12 to get -56.
46x-3x^{2}=56
Add 56 to both sides. Anything plus zero gives itself.
-3x^{2}+46x=56
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+46x}{-3}=\frac{56}{-3}
Divide both sides by -3.
x^{2}+\frac{46}{-3}x=\frac{56}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{46}{3}x=\frac{56}{-3}
Divide 46 by -3.
x^{2}-\frac{46}{3}x=-\frac{56}{3}
Divide 56 by -3.
x^{2}-\frac{46}{3}x+\left(-\frac{23}{3}\right)^{2}=-\frac{56}{3}+\left(-\frac{23}{3}\right)^{2}
Divide -\frac{46}{3}, the coefficient of the x term, by 2 to get -\frac{23}{3}. Then add the square of -\frac{23}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{46}{3}x+\frac{529}{9}=-\frac{56}{3}+\frac{529}{9}
Square -\frac{23}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{46}{3}x+\frac{529}{9}=\frac{361}{9}
Add -\frac{56}{3} to \frac{529}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{23}{3}\right)^{2}=\frac{361}{9}
Factor x^{2}-\frac{46}{3}x+\frac{529}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{3}\right)^{2}}=\sqrt{\frac{361}{9}}
Take the square root of both sides of the equation.
x-\frac{23}{3}=\frac{19}{3} x-\frac{23}{3}=-\frac{19}{3}
Simplify.
x=14 x=\frac{4}{3}
Add \frac{23}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}