Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

409287x^{2}+46436x+878568=5454
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
409287x^{2}+46436x+878568-5454=5454-5454
Subtract 5454 from both sides of the equation.
409287x^{2}+46436x+878568-5454=0
Subtracting 5454 from itself leaves 0.
409287x^{2}+46436x+873114=0
Subtract 5454 from 878568.
x=\frac{-46436±\sqrt{46436^{2}-4\times 409287\times 873114}}{2\times 409287}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 409287 for a, 46436 for b, and 873114 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-46436±\sqrt{2156302096-4\times 409287\times 873114}}{2\times 409287}
Square 46436.
x=\frac{-46436±\sqrt{2156302096-1637148\times 873114}}{2\times 409287}
Multiply -4 times 409287.
x=\frac{-46436±\sqrt{2156302096-1429416838872}}{2\times 409287}
Multiply -1637148 times 873114.
x=\frac{-46436±\sqrt{-1427260536776}}{2\times 409287}
Add 2156302096 to -1429416838872.
x=\frac{-46436±2\sqrt{356815134194}i}{2\times 409287}
Take the square root of -1427260536776.
x=\frac{-46436±2\sqrt{356815134194}i}{818574}
Multiply 2 times 409287.
x=\frac{-46436+2\sqrt{356815134194}i}{818574}
Now solve the equation x=\frac{-46436±2\sqrt{356815134194}i}{818574} when ± is plus. Add -46436 to 2i\sqrt{356815134194}.
x=\frac{-23218+\sqrt{356815134194}i}{409287}
Divide -46436+2i\sqrt{356815134194} by 818574.
x=\frac{-2\sqrt{356815134194}i-46436}{818574}
Now solve the equation x=\frac{-46436±2\sqrt{356815134194}i}{818574} when ± is minus. Subtract 2i\sqrt{356815134194} from -46436.
x=\frac{-\sqrt{356815134194}i-23218}{409287}
Divide -46436-2i\sqrt{356815134194} by 818574.
x=\frac{-23218+\sqrt{356815134194}i}{409287} x=\frac{-\sqrt{356815134194}i-23218}{409287}
The equation is now solved.
409287x^{2}+46436x+878568=5454
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
409287x^{2}+46436x+878568-878568=5454-878568
Subtract 878568 from both sides of the equation.
409287x^{2}+46436x=5454-878568
Subtracting 878568 from itself leaves 0.
409287x^{2}+46436x=-873114
Subtract 878568 from 5454.
\frac{409287x^{2}+46436x}{409287}=-\frac{873114}{409287}
Divide both sides by 409287.
x^{2}+\frac{46436}{409287}x=-\frac{873114}{409287}
Dividing by 409287 undoes the multiplication by 409287.
x^{2}+\frac{46436}{409287}x=-\frac{291038}{136429}
Reduce the fraction \frac{-873114}{409287} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{46436}{409287}x+\left(\frac{23218}{409287}\right)^{2}=-\frac{291038}{136429}+\left(\frac{23218}{409287}\right)^{2}
Divide \frac{46436}{409287}, the coefficient of the x term, by 2 to get \frac{23218}{409287}. Then add the square of \frac{23218}{409287} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{46436}{409287}x+\frac{539075524}{167515848369}=-\frac{291038}{136429}+\frac{539075524}{167515848369}
Square \frac{23218}{409287} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{46436}{409287}x+\frac{539075524}{167515848369}=-\frac{356815134194}{167515848369}
Add -\frac{291038}{136429} to \frac{539075524}{167515848369} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{23218}{409287}\right)^{2}=-\frac{356815134194}{167515848369}
Factor x^{2}+\frac{46436}{409287}x+\frac{539075524}{167515848369}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23218}{409287}\right)^{2}}=\sqrt{-\frac{356815134194}{167515848369}}
Take the square root of both sides of the equation.
x+\frac{23218}{409287}=\frac{\sqrt{356815134194}i}{409287} x+\frac{23218}{409287}=-\frac{\sqrt{356815134194}i}{409287}
Simplify.
x=\frac{-23218+\sqrt{356815134194}i}{409287} x=\frac{-\sqrt{356815134194}i-23218}{409287}
Subtract \frac{23218}{409287} from both sides of the equation.