Solve for a
a=\sqrt{2021}+2020\approx 2064.955533586
a=2020-\sqrt{2021}\approx 1975.044466414
Share
Copied to clipboard
4040a-a^{2}=4078379
Swap sides so that all variable terms are on the left hand side.
4040a-a^{2}-4078379=0
Subtract 4078379 from both sides.
-a^{2}+4040a-4078379=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4040±\sqrt{4040^{2}-4\left(-1\right)\left(-4078379\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4040 for b, and -4078379 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4040±\sqrt{16321600-4\left(-1\right)\left(-4078379\right)}}{2\left(-1\right)}
Square 4040.
a=\frac{-4040±\sqrt{16321600+4\left(-4078379\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-4040±\sqrt{16321600-16313516}}{2\left(-1\right)}
Multiply 4 times -4078379.
a=\frac{-4040±\sqrt{8084}}{2\left(-1\right)}
Add 16321600 to -16313516.
a=\frac{-4040±2\sqrt{2021}}{2\left(-1\right)}
Take the square root of 8084.
a=\frac{-4040±2\sqrt{2021}}{-2}
Multiply 2 times -1.
a=\frac{2\sqrt{2021}-4040}{-2}
Now solve the equation a=\frac{-4040±2\sqrt{2021}}{-2} when ± is plus. Add -4040 to 2\sqrt{2021}.
a=2020-\sqrt{2021}
Divide -4040+2\sqrt{2021} by -2.
a=\frac{-2\sqrt{2021}-4040}{-2}
Now solve the equation a=\frac{-4040±2\sqrt{2021}}{-2} when ± is minus. Subtract 2\sqrt{2021} from -4040.
a=\sqrt{2021}+2020
Divide -4040-2\sqrt{2021} by -2.
a=2020-\sqrt{2021} a=\sqrt{2021}+2020
The equation is now solved.
4040a-a^{2}=4078379
Swap sides so that all variable terms are on the left hand side.
-a^{2}+4040a=4078379
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}+4040a}{-1}=\frac{4078379}{-1}
Divide both sides by -1.
a^{2}+\frac{4040}{-1}a=\frac{4078379}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-4040a=\frac{4078379}{-1}
Divide 4040 by -1.
a^{2}-4040a=-4078379
Divide 4078379 by -1.
a^{2}-4040a+\left(-2020\right)^{2}=-4078379+\left(-2020\right)^{2}
Divide -4040, the coefficient of the x term, by 2 to get -2020. Then add the square of -2020 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4040a+4080400=-4078379+4080400
Square -2020.
a^{2}-4040a+4080400=2021
Add -4078379 to 4080400.
\left(a-2020\right)^{2}=2021
Factor a^{2}-4040a+4080400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2020\right)^{2}}=\sqrt{2021}
Take the square root of both sides of the equation.
a-2020=\sqrt{2021} a-2020=-\sqrt{2021}
Simplify.
a=\sqrt{2021}+2020 a=2020-\sqrt{2021}
Add 2020 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}