Evaluate
10175
Factor
5^{2}\times 11\times 37
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)407000}\\\end{array}
Use the 1^{st} digit 4 from dividend 407000
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)407000}\\\end{array}
Since 4 is less than 40, use the next digit 0 from dividend 407000 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)407000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 407000
\begin{array}{l}\phantom{40)}01\phantom{4}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}0\\\end{array}
Find closest multiple of 40 to 40. We see that 1 \times 40 = 40 is the nearest. Now subtract 40 from 40 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{40)}01\phantom{5}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}7\\\end{array}
Use the 3^{rd} digit 7 from dividend 407000
\begin{array}{l}\phantom{40)}010\phantom{6}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}7\\\end{array}
Since 7 is less than 40, use the next digit 0 from dividend 407000 and add 0 to the quotient
\begin{array}{l}\phantom{40)}010\phantom{7}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}70\\\end{array}
Use the 4^{th} digit 0 from dividend 407000
\begin{array}{l}\phantom{40)}0101\phantom{8}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}70\\\phantom{40)}\underline{\phantom{99}40\phantom{99}}\\\phantom{40)99}30\\\end{array}
Find closest multiple of 40 to 70. We see that 1 \times 40 = 40 is the nearest. Now subtract 40 from 70 to get reminder 30. Add 1 to quotient.
\begin{array}{l}\phantom{40)}0101\phantom{9}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}70\\\phantom{40)}\underline{\phantom{99}40\phantom{99}}\\\phantom{40)99}300\\\end{array}
Use the 5^{th} digit 0 from dividend 407000
\begin{array}{l}\phantom{40)}01017\phantom{10}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}70\\\phantom{40)}\underline{\phantom{99}40\phantom{99}}\\\phantom{40)99}300\\\phantom{40)}\underline{\phantom{99}280\phantom{9}}\\\phantom{40)999}20\\\end{array}
Find closest multiple of 40 to 300. We see that 7 \times 40 = 280 is the nearest. Now subtract 280 from 300 to get reminder 20. Add 7 to quotient.
\begin{array}{l}\phantom{40)}01017\phantom{11}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}70\\\phantom{40)}\underline{\phantom{99}40\phantom{99}}\\\phantom{40)99}300\\\phantom{40)}\underline{\phantom{99}280\phantom{9}}\\\phantom{40)999}200\\\end{array}
Use the 6^{th} digit 0 from dividend 407000
\begin{array}{l}\phantom{40)}010175\phantom{12}\\40\overline{)407000}\\\phantom{40)}\underline{\phantom{}40\phantom{9999}}\\\phantom{40)99}70\\\phantom{40)}\underline{\phantom{99}40\phantom{99}}\\\phantom{40)99}300\\\phantom{40)}\underline{\phantom{99}280\phantom{9}}\\\phantom{40)999}200\\\phantom{40)}\underline{\phantom{999}200\phantom{}}\\\phantom{40)999999}0\\\end{array}
Find closest multiple of 40 to 200. We see that 5 \times 40 = 200 is the nearest. Now subtract 200 from 200 to get reminder 0. Add 5 to quotient.
\text{Quotient: }10175 \text{Reminder: }0
Since 0 is less than 40, stop the division. The reminder is 0. The topmost line 010175 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10175.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}