Evaluate
\frac{20315}{6}\approx 3385.833333333
Factor
\frac{5 \cdot 17 \cdot 239}{2 \cdot 3} = 3385\frac{5}{6} = 3385.8333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)40630}\\\end{array}
Use the 1^{st} digit 4 from dividend 40630
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)40630}\\\end{array}
Since 4 is less than 12, use the next digit 0 from dividend 40630 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)40630}\\\end{array}
Use the 2^{nd} digit 0 from dividend 40630
\begin{array}{l}\phantom{12)}03\phantom{4}\\12\overline{)40630}\\\phantom{12)}\underline{\phantom{}36\phantom{999}}\\\phantom{12)9}4\\\end{array}
Find closest multiple of 12 to 40. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 40 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{12)}03\phantom{5}\\12\overline{)40630}\\\phantom{12)}\underline{\phantom{}36\phantom{999}}\\\phantom{12)9}46\\\end{array}
Use the 3^{rd} digit 6 from dividend 40630
\begin{array}{l}\phantom{12)}033\phantom{6}\\12\overline{)40630}\\\phantom{12)}\underline{\phantom{}36\phantom{999}}\\\phantom{12)9}46\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)9}10\\\end{array}
Find closest multiple of 12 to 46. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 46 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{12)}033\phantom{7}\\12\overline{)40630}\\\phantom{12)}\underline{\phantom{}36\phantom{999}}\\\phantom{12)9}46\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)9}103\\\end{array}
Use the 4^{th} digit 3 from dividend 40630
\begin{array}{l}\phantom{12)}0338\phantom{8}\\12\overline{)40630}\\\phantom{12)}\underline{\phantom{}36\phantom{999}}\\\phantom{12)9}46\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)9}103\\\phantom{12)}\underline{\phantom{99}96\phantom{9}}\\\phantom{12)999}7\\\end{array}
Find closest multiple of 12 to 103. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 103 to get reminder 7. Add 8 to quotient.
\begin{array}{l}\phantom{12)}0338\phantom{9}\\12\overline{)40630}\\\phantom{12)}\underline{\phantom{}36\phantom{999}}\\\phantom{12)9}46\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)9}103\\\phantom{12)}\underline{\phantom{99}96\phantom{9}}\\\phantom{12)999}70\\\end{array}
Use the 5^{th} digit 0 from dividend 40630
\begin{array}{l}\phantom{12)}03385\phantom{10}\\12\overline{)40630}\\\phantom{12)}\underline{\phantom{}36\phantom{999}}\\\phantom{12)9}46\\\phantom{12)}\underline{\phantom{9}36\phantom{99}}\\\phantom{12)9}103\\\phantom{12)}\underline{\phantom{99}96\phantom{9}}\\\phantom{12)999}70\\\phantom{12)}\underline{\phantom{999}60\phantom{}}\\\phantom{12)999}10\\\end{array}
Find closest multiple of 12 to 70. We see that 5 \times 12 = 60 is the nearest. Now subtract 60 from 70 to get reminder 10. Add 5 to quotient.
\text{Quotient: }3385 \text{Reminder: }10
Since 10 is less than 12, stop the division. The reminder is 10. The topmost line 03385 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3385.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}