Evaluate
\frac{406}{125}=3.248
Factor
\frac{2 \cdot 7 \cdot 29}{5 ^ {3}} = 3\frac{31}{125} = 3.248
Share
Copied to clipboard
\begin{array}{l}\phantom{125)}\phantom{1}\\125\overline{)406}\\\end{array}
Use the 1^{st} digit 4 from dividend 406
\begin{array}{l}\phantom{125)}0\phantom{2}\\125\overline{)406}\\\end{array}
Since 4 is less than 125, use the next digit 0 from dividend 406 and add 0 to the quotient
\begin{array}{l}\phantom{125)}0\phantom{3}\\125\overline{)406}\\\end{array}
Use the 2^{nd} digit 0 from dividend 406
\begin{array}{l}\phantom{125)}00\phantom{4}\\125\overline{)406}\\\end{array}
Since 40 is less than 125, use the next digit 6 from dividend 406 and add 0 to the quotient
\begin{array}{l}\phantom{125)}00\phantom{5}\\125\overline{)406}\\\end{array}
Use the 3^{rd} digit 6 from dividend 406
\begin{array}{l}\phantom{125)}003\phantom{6}\\125\overline{)406}\\\phantom{125)}\underline{\phantom{}375\phantom{}}\\\phantom{125)9}31\\\end{array}
Find closest multiple of 125 to 406. We see that 3 \times 125 = 375 is the nearest. Now subtract 375 from 406 to get reminder 31. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }31
Since 31 is less than 125, stop the division. The reminder is 31. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}