Solve for y
y=\frac{\sqrt{101546329}-10073}{1350}\approx 0.002977665
y=\frac{-\sqrt{101546329}-10073}{1350}\approx -14.925940628
Graph
Share
Copied to clipboard
10125y\left(y+15\right)=25y\times 30+\left(y+15\right)\times 30
Variable y cannot be equal to any of the values -15,0 since division by zero is not defined. Multiply both sides of the equation by 25y\left(y+15\right), the least common multiple of 15+y,25y.
10125y^{2}+151875y=25y\times 30+\left(y+15\right)\times 30
Use the distributive property to multiply 10125y by y+15.
10125y^{2}+151875y=750y+\left(y+15\right)\times 30
Multiply 25 and 30 to get 750.
10125y^{2}+151875y=750y+30y+450
Use the distributive property to multiply y+15 by 30.
10125y^{2}+151875y=780y+450
Combine 750y and 30y to get 780y.
10125y^{2}+151875y-780y=450
Subtract 780y from both sides.
10125y^{2}+151095y=450
Combine 151875y and -780y to get 151095y.
10125y^{2}+151095y-450=0
Subtract 450 from both sides.
y=\frac{-151095±\sqrt{151095^{2}-4\times 10125\left(-450\right)}}{2\times 10125}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10125 for a, 151095 for b, and -450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-151095±\sqrt{22829699025-4\times 10125\left(-450\right)}}{2\times 10125}
Square 151095.
y=\frac{-151095±\sqrt{22829699025-40500\left(-450\right)}}{2\times 10125}
Multiply -4 times 10125.
y=\frac{-151095±\sqrt{22829699025+18225000}}{2\times 10125}
Multiply -40500 times -450.
y=\frac{-151095±\sqrt{22847924025}}{2\times 10125}
Add 22829699025 to 18225000.
y=\frac{-151095±15\sqrt{101546329}}{2\times 10125}
Take the square root of 22847924025.
y=\frac{-151095±15\sqrt{101546329}}{20250}
Multiply 2 times 10125.
y=\frac{15\sqrt{101546329}-151095}{20250}
Now solve the equation y=\frac{-151095±15\sqrt{101546329}}{20250} when ± is plus. Add -151095 to 15\sqrt{101546329}.
y=\frac{\sqrt{101546329}-10073}{1350}
Divide -151095+15\sqrt{101546329} by 20250.
y=\frac{-15\sqrt{101546329}-151095}{20250}
Now solve the equation y=\frac{-151095±15\sqrt{101546329}}{20250} when ± is minus. Subtract 15\sqrt{101546329} from -151095.
y=\frac{-\sqrt{101546329}-10073}{1350}
Divide -151095-15\sqrt{101546329} by 20250.
y=\frac{\sqrt{101546329}-10073}{1350} y=\frac{-\sqrt{101546329}-10073}{1350}
The equation is now solved.
10125y\left(y+15\right)=25y\times 30+\left(y+15\right)\times 30
Variable y cannot be equal to any of the values -15,0 since division by zero is not defined. Multiply both sides of the equation by 25y\left(y+15\right), the least common multiple of 15+y,25y.
10125y^{2}+151875y=25y\times 30+\left(y+15\right)\times 30
Use the distributive property to multiply 10125y by y+15.
10125y^{2}+151875y=750y+\left(y+15\right)\times 30
Multiply 25 and 30 to get 750.
10125y^{2}+151875y=750y+30y+450
Use the distributive property to multiply y+15 by 30.
10125y^{2}+151875y=780y+450
Combine 750y and 30y to get 780y.
10125y^{2}+151875y-780y=450
Subtract 780y from both sides.
10125y^{2}+151095y=450
Combine 151875y and -780y to get 151095y.
\frac{10125y^{2}+151095y}{10125}=\frac{450}{10125}
Divide both sides by 10125.
y^{2}+\frac{151095}{10125}y=\frac{450}{10125}
Dividing by 10125 undoes the multiplication by 10125.
y^{2}+\frac{10073}{675}y=\frac{450}{10125}
Reduce the fraction \frac{151095}{10125} to lowest terms by extracting and canceling out 15.
y^{2}+\frac{10073}{675}y=\frac{2}{45}
Reduce the fraction \frac{450}{10125} to lowest terms by extracting and canceling out 225.
y^{2}+\frac{10073}{675}y+\left(\frac{10073}{1350}\right)^{2}=\frac{2}{45}+\left(\frac{10073}{1350}\right)^{2}
Divide \frac{10073}{675}, the coefficient of the x term, by 2 to get \frac{10073}{1350}. Then add the square of \frac{10073}{1350} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{10073}{675}y+\frac{101465329}{1822500}=\frac{2}{45}+\frac{101465329}{1822500}
Square \frac{10073}{1350} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{10073}{675}y+\frac{101465329}{1822500}=\frac{101546329}{1822500}
Add \frac{2}{45} to \frac{101465329}{1822500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{10073}{1350}\right)^{2}=\frac{101546329}{1822500}
Factor y^{2}+\frac{10073}{675}y+\frac{101465329}{1822500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{10073}{1350}\right)^{2}}=\sqrt{\frac{101546329}{1822500}}
Take the square root of both sides of the equation.
y+\frac{10073}{1350}=\frac{\sqrt{101546329}}{1350} y+\frac{10073}{1350}=-\frac{\sqrt{101546329}}{1350}
Simplify.
y=\frac{\sqrt{101546329}-10073}{1350} y=\frac{-\sqrt{101546329}-10073}{1350}
Subtract \frac{10073}{1350} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}